ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashunsng GIF version

Theorem hashunsng 10742
Description: The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashunsng (𝐵𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1)))

Proof of Theorem hashunsng
StepHypRef Expression
1 simpll 524 . . . 4 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) ∧ 𝐵𝑉) → 𝐴 ∈ Fin)
2 snfig 6792 . . . . 5 (𝐵𝑉 → {𝐵} ∈ Fin)
32adantl 275 . . . 4 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) ∧ 𝐵𝑉) → {𝐵} ∈ Fin)
4 simplr 525 . . . . 5 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) ∧ 𝐵𝑉) → ¬ 𝐵𝐴)
5 disjsn 3645 . . . . 5 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
64, 5sylibr 133 . . . 4 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) ∧ 𝐵𝑉) → (𝐴 ∩ {𝐵}) = ∅)
7 hashun 10740 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ (𝐴 ∩ {𝐵}) = ∅) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + (♯‘{𝐵})))
81, 3, 6, 7syl3anc 1233 . . 3 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) ∧ 𝐵𝑉) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + (♯‘{𝐵})))
9 hashsng 10733 . . . . 5 (𝐵𝑉 → (♯‘{𝐵}) = 1)
109oveq2d 5869 . . . 4 (𝐵𝑉 → ((♯‘𝐴) + (♯‘{𝐵})) = ((♯‘𝐴) + 1))
1110adantl 275 . . 3 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) ∧ 𝐵𝑉) → ((♯‘𝐴) + (♯‘{𝐵})) = ((♯‘𝐴) + 1))
128, 11eqtrd 2203 . 2 (((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) ∧ 𝐵𝑉) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1))
1312expcom 115 1 (𝐵𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  cun 3119  cin 3120  c0 3414  {csn 3583  cfv 5198  (class class class)co 5853  Fincfn 6718  1c1 7775   + caddc 7777  chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-ihash 10710
This theorem is referenced by:  hashprg  10743  hashp1i  10745  hashxp  10761  fprodconst  11583
  Copyright terms: Public domain W3C validator