| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnglidlmmgm | Unicode version | ||
| Description: The multiplicative group
of a (left) ideal of a non-unital ring is a
magma. (Contributed by AV, 17-Feb-2020.) Generalization for
non-unital rings. The assumption |
| Ref | Expression |
|---|---|
| rnglidlabl.l |
|
| rnglidlabl.i |
|
| rnglidlabl.z |
|
| Ref | Expression |
|---|---|
| rnglidlmmgm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . . . . 6
| |
| 2 | rnglidlabl.l |
. . . . . . . . 9
| |
| 3 | rnglidlabl.i |
. . . . . . . . 9
| |
| 4 | 2, 3 | lidlbas 14240 |
. . . . . . . 8
|
| 5 | eleq1a 2277 |
. . . . . . . 8
| |
| 6 | 4, 5 | mpd 13 |
. . . . . . 7
|
| 7 | 6 | 3ad2ant2 1022 |
. . . . . 6
|
| 8 | 4 | eqcomd 2211 |
. . . . . . . . 9
|
| 9 | 8 | eleq2d 2275 |
. . . . . . . 8
|
| 10 | 9 | biimpa 296 |
. . . . . . 7
|
| 11 | 10 | 3adant1 1018 |
. . . . . 6
|
| 12 | 1, 7, 11 | 3jca 1180 |
. . . . 5
|
| 13 | 2, 3 | lidlssbas 14239 |
. . . . . . . . 9
|
| 14 | 13 | sseld 3192 |
. . . . . . . 8
|
| 15 | 14 | 3ad2ant2 1022 |
. . . . . . 7
|
| 16 | 15 | anim1d 336 |
. . . . . 6
|
| 17 | 16 | imp 124 |
. . . . 5
|
| 18 | rnglidlabl.z |
. . . . . 6
| |
| 19 | eqid 2205 |
. . . . . 6
| |
| 20 | eqid 2205 |
. . . . . 6
| |
| 21 | 18, 19, 20, 2 | rnglidlmcl 14242 |
. . . . 5
|
| 22 | 12, 17, 21 | syl2an2r 595 |
. . . 4
|
| 23 | simp2 1001 |
. . . . . . . . 9
| |
| 24 | 3, 20 | ressmulrg 12977 |
. . . . . . . . 9
|
| 25 | 23, 1, 24 | syl2anc 411 |
. . . . . . . 8
|
| 26 | 25 | eqcomd 2211 |
. . . . . . 7
|
| 27 | 26 | oveqd 5961 |
. . . . . 6
|
| 28 | 27 | eleq1d 2274 |
. . . . 5
|
| 29 | 28 | adantr 276 |
. . . 4
|
| 30 | 22, 29 | mpbird 167 |
. . 3
|
| 31 | 30 | ralrimivva 2588 |
. 2
|
| 32 | ressex 12897 |
. . . . . 6
| |
| 33 | 3, 32 | eqeltrid 2292 |
. . . . 5
|
| 34 | 1, 23, 33 | syl2anc 411 |
. . . 4
|
| 35 | eqid 2205 |
. . . . 5
| |
| 36 | 35 | mgpex 13687 |
. . . 4
|
| 37 | eqid 2205 |
. . . . 5
| |
| 38 | eqid 2205 |
. . . . 5
| |
| 39 | 37, 38 | ismgm 13189 |
. . . 4
|
| 40 | 34, 36, 39 | 3syl 17 |
. . 3
|
| 41 | eqid 2205 |
. . . . . 6
| |
| 42 | 35, 41 | mgpbasg 13688 |
. . . . 5
|
| 43 | 34, 42 | syl 14 |
. . . 4
|
| 44 | eqid 2205 |
. . . . . . . . 9
| |
| 45 | 35, 44 | mgpplusgg 13686 |
. . . . . . . 8
|
| 46 | 34, 45 | syl 14 |
. . . . . . 7
|
| 47 | 46 | oveqd 5961 |
. . . . . 6
|
| 48 | 47, 43 | eleq12d 2276 |
. . . . 5
|
| 49 | 43, 48 | raleqbidv 2718 |
. . . 4
|
| 50 | 43, 49 | raleqbidv 2718 |
. . 3
|
| 51 | 40, 50 | bitr4d 191 |
. 2
|
| 52 | 31, 51 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-sca 12925 df-vsca 12926 df-ip 12927 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-abl 13623 df-mgp 13683 df-rng 13695 df-lssm 14115 df-sra 14197 df-rgmod 14198 df-lidl 14231 |
| This theorem is referenced by: rnglidlmsgrp 14259 |
| Copyright terms: Public domain | W3C validator |