ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmmgm Unicode version

Theorem rnglidlmmgm 13995
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmmgm  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )

Proof of Theorem rnglidlmmgm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
2 rnglidlabl.l . . . . . . . . 9  |-  L  =  (LIdeal `  R )
3 rnglidlabl.i . . . . . . . . 9  |-  I  =  ( Rs  U )
42, 3lidlbas 13977 . . . . . . . 8  |-  ( U  e.  L  ->  ( Base `  I )  =  U )
5 eleq1a 2265 . . . . . . . 8  |-  ( U  e.  L  ->  (
( Base `  I )  =  U  ->  ( Base `  I )  e.  L
) )
64, 5mpd 13 . . . . . . 7  |-  ( U  e.  L  ->  ( Base `  I )  e.  L )
763ad2ant2 1021 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  e.  L )
84eqcomd 2199 . . . . . . . . 9  |-  ( U  e.  L  ->  U  =  ( Base `  I
) )
98eleq2d 2263 . . . . . . . 8  |-  ( U  e.  L  ->  (  .0.  e.  U  <->  .0.  e.  ( Base `  I )
) )
109biimpa 296 . . . . . . 7  |-  ( ( U  e.  L  /\  .0.  e.  U )  ->  .0.  e.  ( Base `  I
) )
11103adant1 1017 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  .0.  e.  ( Base `  I
) )
121, 7, 113jca 1179 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( R  e. Rng  /\  ( Base `  I )  e.  L  /\  .0.  e.  ( Base `  I ) ) )
132, 3lidlssbas 13976 . . . . . . . . 9  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
1413sseld 3179 . . . . . . . 8  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
15143ad2ant2 1021 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
1615anim1d 336 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) ) )
1716imp 124 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) )
18 rnglidlabl.z . . . . . 6  |-  .0.  =  ( 0g `  R )
19 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2193 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
2118, 19, 20, 2rnglidlmcl 13979 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( Base `  I )  e.  L  /\  .0.  e.  ( Base `  I )
)  /\  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) )  ->  (
a ( .r `  R ) b )  e.  ( Base `  I
) )
2212, 17, 21syl2an2r 595 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a
( .r `  R
) b )  e.  ( Base `  I
) )
23 simp2 1000 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
243, 20ressmulrg 12765 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
2523, 1, 24syl2anc 411 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( .r `  I
) )
2625eqcomd 2199 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( .r `  R
) )
2726oveqd 5936 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
2827eleq1d 2262 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b )  e.  ( Base `  I )  <->  ( a
( .r `  R
) b )  e.  ( Base `  I
) ) )
2928adantr 276 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( (
a ( .r `  I ) b )  e.  ( Base `  I
)  <->  ( a ( .r `  R ) b )  e.  (
Base `  I )
) )
3022, 29mpbird 167 . . 3  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a
( .r `  I
) b )  e.  ( Base `  I
) )
3130ralrimivva 2576 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) ( a ( .r `  I ) b )  e.  (
Base `  I )
)
32 ressex 12686 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
333, 32eqeltrid 2280 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  I  e.  _V )
341, 23, 33syl2anc 411 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
35 eqid 2193 . . . . 5  |-  (mulGrp `  I )  =  (mulGrp `  I )
3635mgpex 13424 . . . 4  |-  ( I  e.  _V  ->  (mulGrp `  I )  e.  _V )
37 eqid 2193 . . . . 5  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
38 eqid 2193 . . . . 5  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
3937, 38ismgm 12943 . . . 4  |-  ( (mulGrp `  I )  e.  _V  ->  ( (mulGrp `  I
)  e. Mgm  <->  A. a  e.  (
Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
4034, 36, 393syl 17 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
(mulGrp `  I )  e. Mgm  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
41 eqid 2193 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
4235, 41mgpbasg 13425 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
4334, 42syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
44 eqid 2193 . . . . . . . . 9  |-  ( .r
`  I )  =  ( .r `  I
)
4535, 44mgpplusgg 13423 . . . . . . . 8  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
4634, 45syl 14 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
4746oveqd 5936 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
4847, 43eleq12d 2264 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b )  e.  ( Base `  I )  <->  ( a
( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
4943, 48raleqbidv 2706 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) ( a ( .r `  I ) b )  e.  ( Base `  I
)  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
5043, 49raleqbidv 2706 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) ( a ( .r `  I
) b )  e.  ( Base `  I
)  <->  A. a  e.  (
Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
5140, 50bitr4d 191 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
(mulGrp `  I )  e. Mgm  <->  A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) ( a ( .r `  I
) b )  e.  ( Base `  I
) ) )
5231, 51mpbird 167 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   ` cfv 5255  (class class class)co 5919   Basecbs 12621   ↾s cress 12622   +g cplusg 12698   .rcmulr 12699   0gc0g 12870  Mgmcmgm 12940  mulGrpcmgp 13419  Rngcrng 13431  LIdealclidl 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-abl 13360  df-mgp 13420  df-rng 13432  df-lssm 13852  df-sra 13934  df-rgmod 13935  df-lidl 13968
This theorem is referenced by:  rnglidlmsgrp  13996
  Copyright terms: Public domain W3C validator