ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmmgm Unicode version

Theorem rnglidlmmgm 14258
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmmgm  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )

Proof of Theorem rnglidlmmgm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
2 rnglidlabl.l . . . . . . . . 9  |-  L  =  (LIdeal `  R )
3 rnglidlabl.i . . . . . . . . 9  |-  I  =  ( Rs  U )
42, 3lidlbas 14240 . . . . . . . 8  |-  ( U  e.  L  ->  ( Base `  I )  =  U )
5 eleq1a 2277 . . . . . . . 8  |-  ( U  e.  L  ->  (
( Base `  I )  =  U  ->  ( Base `  I )  e.  L
) )
64, 5mpd 13 . . . . . . 7  |-  ( U  e.  L  ->  ( Base `  I )  e.  L )
763ad2ant2 1022 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  e.  L )
84eqcomd 2211 . . . . . . . . 9  |-  ( U  e.  L  ->  U  =  ( Base `  I
) )
98eleq2d 2275 . . . . . . . 8  |-  ( U  e.  L  ->  (  .0.  e.  U  <->  .0.  e.  ( Base `  I )
) )
109biimpa 296 . . . . . . 7  |-  ( ( U  e.  L  /\  .0.  e.  U )  ->  .0.  e.  ( Base `  I
) )
11103adant1 1018 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  .0.  e.  ( Base `  I
) )
121, 7, 113jca 1180 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( R  e. Rng  /\  ( Base `  I )  e.  L  /\  .0.  e.  ( Base `  I ) ) )
132, 3lidlssbas 14239 . . . . . . . . 9  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
1413sseld 3192 . . . . . . . 8  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
15143ad2ant2 1022 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
1615anim1d 336 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) ) )
1716imp 124 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) )
18 rnglidlabl.z . . . . . 6  |-  .0.  =  ( 0g `  R )
19 eqid 2205 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2205 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
2118, 19, 20, 2rnglidlmcl 14242 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( Base `  I )  e.  L  /\  .0.  e.  ( Base `  I )
)  /\  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) )  ->  (
a ( .r `  R ) b )  e.  ( Base `  I
) )
2212, 17, 21syl2an2r 595 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a
( .r `  R
) b )  e.  ( Base `  I
) )
23 simp2 1001 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
243, 20ressmulrg 12977 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
2523, 1, 24syl2anc 411 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( .r `  I
) )
2625eqcomd 2211 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( .r `  R
) )
2726oveqd 5961 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
2827eleq1d 2274 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b )  e.  ( Base `  I )  <->  ( a
( .r `  R
) b )  e.  ( Base `  I
) ) )
2928adantr 276 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( (
a ( .r `  I ) b )  e.  ( Base `  I
)  <->  ( a ( .r `  R ) b )  e.  (
Base `  I )
) )
3022, 29mpbird 167 . . 3  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a
( .r `  I
) b )  e.  ( Base `  I
) )
3130ralrimivva 2588 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) ( a ( .r `  I ) b )  e.  (
Base `  I )
)
32 ressex 12897 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
333, 32eqeltrid 2292 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  I  e.  _V )
341, 23, 33syl2anc 411 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
35 eqid 2205 . . . . 5  |-  (mulGrp `  I )  =  (mulGrp `  I )
3635mgpex 13687 . . . 4  |-  ( I  e.  _V  ->  (mulGrp `  I )  e.  _V )
37 eqid 2205 . . . . 5  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
38 eqid 2205 . . . . 5  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
3937, 38ismgm 13189 . . . 4  |-  ( (mulGrp `  I )  e.  _V  ->  ( (mulGrp `  I
)  e. Mgm  <->  A. a  e.  (
Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
4034, 36, 393syl 17 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
(mulGrp `  I )  e. Mgm  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
41 eqid 2205 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
4235, 41mgpbasg 13688 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
4334, 42syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
44 eqid 2205 . . . . . . . . 9  |-  ( .r
`  I )  =  ( .r `  I
)
4535, 44mgpplusgg 13686 . . . . . . . 8  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
4634, 45syl 14 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
4746oveqd 5961 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
4847, 43eleq12d 2276 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b )  e.  ( Base `  I )  <->  ( a
( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
4943, 48raleqbidv 2718 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) ( a ( .r `  I ) b )  e.  ( Base `  I
)  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
5043, 49raleqbidv 2718 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) ( a ( .r `  I
) b )  e.  ( Base `  I
)  <->  A. a  e.  (
Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
5140, 50bitr4d 191 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
(mulGrp `  I )  e. Mgm  <->  A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) ( a ( .r `  I
) b )  e.  ( Base `  I
) ) )
5231, 51mpbird 167 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   .rcmulr 12910   0gc0g 13088  Mgmcmgm 13186  mulGrpcmgp 13682  Rngcrng 13694  LIdealclidl 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-ip 12927  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-abl 13623  df-mgp 13683  df-rng 13695  df-lssm 14115  df-sra 14197  df-rgmod 14198  df-lidl 14231
This theorem is referenced by:  rnglidlmsgrp  14259
  Copyright terms: Public domain W3C validator