ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmmgm Unicode version

Theorem rnglidlmmgm 13812
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmmgm  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )

Proof of Theorem rnglidlmmgm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
2 rnglidlabl.l . . . . . . . . 9  |-  L  =  (LIdeal `  R )
3 rnglidlabl.i . . . . . . . . 9  |-  I  =  ( Rs  U )
42, 3lidlbas 13794 . . . . . . . 8  |-  ( U  e.  L  ->  ( Base `  I )  =  U )
5 eleq1a 2261 . . . . . . . 8  |-  ( U  e.  L  ->  (
( Base `  I )  =  U  ->  ( Base `  I )  e.  L
) )
64, 5mpd 13 . . . . . . 7  |-  ( U  e.  L  ->  ( Base `  I )  e.  L )
763ad2ant2 1021 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  e.  L )
84eqcomd 2195 . . . . . . . . 9  |-  ( U  e.  L  ->  U  =  ( Base `  I
) )
98eleq2d 2259 . . . . . . . 8  |-  ( U  e.  L  ->  (  .0.  e.  U  <->  .0.  e.  ( Base `  I )
) )
109biimpa 296 . . . . . . 7  |-  ( ( U  e.  L  /\  .0.  e.  U )  ->  .0.  e.  ( Base `  I
) )
11103adant1 1017 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  .0.  e.  ( Base `  I
) )
121, 7, 113jca 1179 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( R  e. Rng  /\  ( Base `  I )  e.  L  /\  .0.  e.  ( Base `  I ) ) )
132, 3lidlssbas 13793 . . . . . . . . 9  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
1413sseld 3169 . . . . . . . 8  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
15143ad2ant2 1021 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
1615anim1d 336 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) ) )
1716imp 124 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) )
18 rnglidlabl.z . . . . . 6  |-  .0.  =  ( 0g `  R )
19 eqid 2189 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2189 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
2118, 19, 20, 2rnglidlmcl 13796 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( Base `  I )  e.  L  /\  .0.  e.  ( Base `  I )
)  /\  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) )  ->  (
a ( .r `  R ) b )  e.  ( Base `  I
) )
2212, 17, 21syl2an2r 595 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a
( .r `  R
) b )  e.  ( Base `  I
) )
23 simp2 1000 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
243, 20ressmulrg 12656 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
2523, 1, 24syl2anc 411 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( .r `  I
) )
2625eqcomd 2195 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( .r `  R
) )
2726oveqd 5913 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
2827eleq1d 2258 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b )  e.  ( Base `  I )  <->  ( a
( .r `  R
) b )  e.  ( Base `  I
) ) )
2928adantr 276 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( (
a ( .r `  I ) b )  e.  ( Base `  I
)  <->  ( a ( .r `  R ) b )  e.  (
Base `  I )
) )
3022, 29mpbird 167 . . 3  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a
( .r `  I
) b )  e.  ( Base `  I
) )
3130ralrimivva 2572 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) ( a ( .r `  I ) b )  e.  (
Base `  I )
)
32 ressex 12577 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
333, 32eqeltrid 2276 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  I  e.  _V )
341, 23, 33syl2anc 411 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
35 eqid 2189 . . . . 5  |-  (mulGrp `  I )  =  (mulGrp `  I )
3635mgpex 13279 . . . 4  |-  ( I  e.  _V  ->  (mulGrp `  I )  e.  _V )
37 eqid 2189 . . . . 5  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
38 eqid 2189 . . . . 5  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
3937, 38ismgm 12833 . . . 4  |-  ( (mulGrp `  I )  e.  _V  ->  ( (mulGrp `  I
)  e. Mgm  <->  A. a  e.  (
Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
4034, 36, 393syl 17 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
(mulGrp `  I )  e. Mgm  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
41 eqid 2189 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
4235, 41mgpbasg 13280 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
4334, 42syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
44 eqid 2189 . . . . . . . . 9  |-  ( .r
`  I )  =  ( .r `  I
)
4535, 44mgpplusgg 13278 . . . . . . . 8  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
4634, 45syl 14 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
4746oveqd 5913 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
4847, 43eleq12d 2260 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b )  e.  ( Base `  I )  <->  ( a
( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
4943, 48raleqbidv 2698 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) ( a ( .r `  I ) b )  e.  ( Base `  I
)  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
5043, 49raleqbidv 2698 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) ( a ( .r `  I
) b )  e.  ( Base `  I
)  <->  A. a  e.  (
Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
5140, 50bitr4d 191 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
(mulGrp `  I )  e. Mgm  <->  A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) ( a ( .r `  I
) b )  e.  ( Base `  I
) ) )
5231, 51mpbird 167 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752   ` cfv 5235  (class class class)co 5896   Basecbs 12512   ↾s cress 12513   +g cplusg 12589   .rcmulr 12590   0gc0g 12761  Mgmcmgm 12830  mulGrpcmgp 13274  Rngcrng 13286  LIdealclidl 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-7 9013  df-8 9014  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-iress 12520  df-plusg 12602  df-mulr 12603  df-sca 12605  df-vsca 12606  df-ip 12607  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-abl 13226  df-mgp 13275  df-rng 13287  df-lssm 13669  df-sra 13751  df-rgmod 13752  df-lidl 13785
This theorem is referenced by:  rnglidlmsgrp  13813
  Copyright terms: Public domain W3C validator