| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnglidlmmgm | Unicode version | ||
| Description: The multiplicative group
of a (left) ideal of a non-unital ring is a
magma. (Contributed by AV, 17-Feb-2020.) Generalization for
non-unital rings. The assumption |
| Ref | Expression |
|---|---|
| rnglidlabl.l |
|
| rnglidlabl.i |
|
| rnglidlabl.z |
|
| Ref | Expression |
|---|---|
| rnglidlmmgm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. . . . . 6
| |
| 2 | rnglidlabl.l |
. . . . . . . . 9
| |
| 3 | rnglidlabl.i |
. . . . . . . . 9
| |
| 4 | 2, 3 | lidlbas 14034 |
. . . . . . . 8
|
| 5 | eleq1a 2268 |
. . . . . . . 8
| |
| 6 | 4, 5 | mpd 13 |
. . . . . . 7
|
| 7 | 6 | 3ad2ant2 1021 |
. . . . . 6
|
| 8 | 4 | eqcomd 2202 |
. . . . . . . . 9
|
| 9 | 8 | eleq2d 2266 |
. . . . . . . 8
|
| 10 | 9 | biimpa 296 |
. . . . . . 7
|
| 11 | 10 | 3adant1 1017 |
. . . . . 6
|
| 12 | 1, 7, 11 | 3jca 1179 |
. . . . 5
|
| 13 | 2, 3 | lidlssbas 14033 |
. . . . . . . . 9
|
| 14 | 13 | sseld 3182 |
. . . . . . . 8
|
| 15 | 14 | 3ad2ant2 1021 |
. . . . . . 7
|
| 16 | 15 | anim1d 336 |
. . . . . 6
|
| 17 | 16 | imp 124 |
. . . . 5
|
| 18 | rnglidlabl.z |
. . . . . 6
| |
| 19 | eqid 2196 |
. . . . . 6
| |
| 20 | eqid 2196 |
. . . . . 6
| |
| 21 | 18, 19, 20, 2 | rnglidlmcl 14036 |
. . . . 5
|
| 22 | 12, 17, 21 | syl2an2r 595 |
. . . 4
|
| 23 | simp2 1000 |
. . . . . . . . 9
| |
| 24 | 3, 20 | ressmulrg 12822 |
. . . . . . . . 9
|
| 25 | 23, 1, 24 | syl2anc 411 |
. . . . . . . 8
|
| 26 | 25 | eqcomd 2202 |
. . . . . . 7
|
| 27 | 26 | oveqd 5939 |
. . . . . 6
|
| 28 | 27 | eleq1d 2265 |
. . . . 5
|
| 29 | 28 | adantr 276 |
. . . 4
|
| 30 | 22, 29 | mpbird 167 |
. . 3
|
| 31 | 30 | ralrimivva 2579 |
. 2
|
| 32 | ressex 12743 |
. . . . . 6
| |
| 33 | 3, 32 | eqeltrid 2283 |
. . . . 5
|
| 34 | 1, 23, 33 | syl2anc 411 |
. . . 4
|
| 35 | eqid 2196 |
. . . . 5
| |
| 36 | 35 | mgpex 13481 |
. . . 4
|
| 37 | eqid 2196 |
. . . . 5
| |
| 38 | eqid 2196 |
. . . . 5
| |
| 39 | 37, 38 | ismgm 13000 |
. . . 4
|
| 40 | 34, 36, 39 | 3syl 17 |
. . 3
|
| 41 | eqid 2196 |
. . . . . 6
| |
| 42 | 35, 41 | mgpbasg 13482 |
. . . . 5
|
| 43 | 34, 42 | syl 14 |
. . . 4
|
| 44 | eqid 2196 |
. . . . . . . . 9
| |
| 45 | 35, 44 | mgpplusgg 13480 |
. . . . . . . 8
|
| 46 | 34, 45 | syl 14 |
. . . . . . 7
|
| 47 | 46 | oveqd 5939 |
. . . . . 6
|
| 48 | 47, 43 | eleq12d 2267 |
. . . . 5
|
| 49 | 43, 48 | raleqbidv 2709 |
. . . 4
|
| 50 | 43, 49 | raleqbidv 2709 |
. . 3
|
| 51 | 40, 50 | bitr4d 191 |
. 2
|
| 52 | 31, 51 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-ip 12773 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-abl 13417 df-mgp 13477 df-rng 13489 df-lssm 13909 df-sra 13991 df-rgmod 13992 df-lidl 14025 |
| This theorem is referenced by: rnglidlmsgrp 14053 |
| Copyright terms: Public domain | W3C validator |