ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmmgm Unicode version

Theorem rnglidlmmgm 14454
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmmgm  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )

Proof of Theorem rnglidlmmgm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
2 rnglidlabl.l . . . . . . . . 9  |-  L  =  (LIdeal `  R )
3 rnglidlabl.i . . . . . . . . 9  |-  I  =  ( Rs  U )
42, 3lidlbas 14436 . . . . . . . 8  |-  ( U  e.  L  ->  ( Base `  I )  =  U )
5 eleq1a 2301 . . . . . . . 8  |-  ( U  e.  L  ->  (
( Base `  I )  =  U  ->  ( Base `  I )  e.  L
) )
64, 5mpd 13 . . . . . . 7  |-  ( U  e.  L  ->  ( Base `  I )  e.  L )
763ad2ant2 1043 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  e.  L )
84eqcomd 2235 . . . . . . . . 9  |-  ( U  e.  L  ->  U  =  ( Base `  I
) )
98eleq2d 2299 . . . . . . . 8  |-  ( U  e.  L  ->  (  .0.  e.  U  <->  .0.  e.  ( Base `  I )
) )
109biimpa 296 . . . . . . 7  |-  ( ( U  e.  L  /\  .0.  e.  U )  ->  .0.  e.  ( Base `  I
) )
11103adant1 1039 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  .0.  e.  ( Base `  I
) )
121, 7, 113jca 1201 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( R  e. Rng  /\  ( Base `  I )  e.  L  /\  .0.  e.  ( Base `  I ) ) )
132, 3lidlssbas 14435 . . . . . . . . 9  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
1413sseld 3223 . . . . . . . 8  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
15143ad2ant2 1043 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
1615anim1d 336 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) ) )
1716imp 124 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) )
18 rnglidlabl.z . . . . . 6  |-  .0.  =  ( 0g `  R )
19 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
20 eqid 2229 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
2118, 19, 20, 2rnglidlmcl 14438 . . . . 5  |-  ( ( ( R  e. Rng  /\  ( Base `  I )  e.  L  /\  .0.  e.  ( Base `  I )
)  /\  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  I )
) )  ->  (
a ( .r `  R ) b )  e.  ( Base `  I
) )
2212, 17, 21syl2an2r 597 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a
( .r `  R
) b )  e.  ( Base `  I
) )
23 simp2 1022 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
243, 20ressmulrg 13173 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
2523, 1, 24syl2anc 411 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( .r `  I
) )
2625eqcomd 2235 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( .r `  R
) )
2726oveqd 6017 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
2827eleq1d 2298 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b )  e.  ( Base `  I )  <->  ( a
( .r `  R
) b )  e.  ( Base `  I
) ) )
2928adantr 276 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( (
a ( .r `  I ) b )  e.  ( Base `  I
)  <->  ( a ( .r `  R ) b )  e.  (
Base `  I )
) )
3022, 29mpbird 167 . . 3  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I ) ) )  ->  ( a
( .r `  I
) b )  e.  ( Base `  I
) )
3130ralrimivva 2612 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) ( a ( .r `  I ) b )  e.  (
Base `  I )
)
32 ressex 13093 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
333, 32eqeltrid 2316 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  I  e.  _V )
341, 23, 33syl2anc 411 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
35 eqid 2229 . . . . 5  |-  (mulGrp `  I )  =  (mulGrp `  I )
3635mgpex 13883 . . . 4  |-  ( I  e.  _V  ->  (mulGrp `  I )  e.  _V )
37 eqid 2229 . . . . 5  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
38 eqid 2229 . . . . 5  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
3937, 38ismgm 13385 . . . 4  |-  ( (mulGrp `  I )  e.  _V  ->  ( (mulGrp `  I
)  e. Mgm  <->  A. a  e.  (
Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
4034, 36, 393syl 17 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
(mulGrp `  I )  e. Mgm  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
41 eqid 2229 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
4235, 41mgpbasg 13884 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
4334, 42syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
44 eqid 2229 . . . . . . . . 9  |-  ( .r
`  I )  =  ( .r `  I
)
4535, 44mgpplusgg 13882 . . . . . . . 8  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
4634, 45syl 14 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
4746oveqd 6017 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
4847, 43eleq12d 2300 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b )  e.  ( Base `  I )  <->  ( a
( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
4943, 48raleqbidv 2744 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) ( a ( .r `  I ) b )  e.  ( Base `  I
)  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
5043, 49raleqbidv 2744 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) ( a ( .r `  I
) b )  e.  ( Base `  I
)  <->  A. a  e.  (
Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) ( a ( +g  `  (mulGrp `  I ) ) b )  e.  ( Base `  (mulGrp `  I )
) ) )
5140, 50bitr4d 191 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
(mulGrp `  I )  e. Mgm  <->  A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) ( a ( .r `  I
) b )  e.  ( Base `  I
) ) )
5231, 51mpbird 167 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   .rcmulr 13106   0gc0g 13284  Mgmcmgm 13382  mulGrpcmgp 13878  Rngcrng 13890  LIdealclidl 14425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-ip 13123  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-abl 13819  df-mgp 13879  df-rng 13891  df-lssm 14311  df-sra 14393  df-rgmod 14394  df-lidl 14427
This theorem is referenced by:  rnglidlmsgrp  14455
  Copyright terms: Public domain W3C validator