Proof of Theorem lidlrsppropdg
| Step | Hyp | Ref
| Expression |
| 1 | | lidlpropd.1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 2 | | lidlpropdg.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| 3 | | rlmbasg 14011 |
. . . . . 6
⊢ (𝐾 ∈ 𝑋 → (Base‘𝐾) = (Base‘(ringLMod‘𝐾))) |
| 4 | 2, 3 | syl 14 |
. . . . 5
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(ringLMod‘𝐾))) |
| 5 | 1, 4 | eqtrd 2229 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐾))) |
| 6 | | lidlpropd.2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 7 | | lidlpropdg.l |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ 𝑌) |
| 8 | | rlmbasg 14011 |
. . . . . 6
⊢ (𝐿 ∈ 𝑌 → (Base‘𝐿) = (Base‘(ringLMod‘𝐿))) |
| 9 | 7, 8 | syl 14 |
. . . . 5
⊢ (𝜑 → (Base‘𝐿) =
(Base‘(ringLMod‘𝐿))) |
| 10 | 6, 9 | eqtrd 2229 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐿))) |
| 11 | | lidlpropd.3 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
| 12 | | lidlpropd.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 13 | | rlmplusgg 14012 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑋 → (+g‘𝐾) =
(+g‘(ringLMod‘𝐾))) |
| 14 | 2, 13 | syl 14 |
. . . . . 6
⊢ (𝜑 → (+g‘𝐾) =
(+g‘(ringLMod‘𝐾))) |
| 15 | 14 | oveqdr 5950 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦)) |
| 16 | | rlmplusgg 14012 |
. . . . . . 7
⊢ (𝐿 ∈ 𝑌 → (+g‘𝐿) =
(+g‘(ringLMod‘𝐿))) |
| 17 | 7, 16 | syl 14 |
. . . . . 6
⊢ (𝜑 → (+g‘𝐿) =
(+g‘(ringLMod‘𝐿))) |
| 18 | 17 | oveqdr 5950 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
| 19 | 12, 15, 18 | 3eqtr3d 2237 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
| 20 | | rlmvscag 14017 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑋 → (.r‘𝐾) = (
·𝑠 ‘(ringLMod‘𝐾))) |
| 21 | 2, 20 | syl 14 |
. . . . . 6
⊢ (𝜑 → (.r‘𝐾) = (
·𝑠 ‘(ringLMod‘𝐾))) |
| 22 | 21 | oveqdr 5950 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))𝑦)) |
| 23 | | lidlpropd.5 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) |
| 24 | 22, 23 | eqeltrrd 2274 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘(ringLMod‘𝐾))𝑦) ∈ 𝑊) |
| 25 | | lidlpropd.6 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 26 | | rlmvscag 14017 |
. . . . . . 7
⊢ (𝐿 ∈ 𝑌 → (.r‘𝐿) = (
·𝑠 ‘(ringLMod‘𝐿))) |
| 27 | 7, 26 | syl 14 |
. . . . . 6
⊢ (𝜑 → (.r‘𝐿) = (
·𝑠 ‘(ringLMod‘𝐿))) |
| 28 | 27 | oveqdr 5950 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥( ·𝑠
‘(ringLMod‘𝐿))𝑦)) |
| 29 | 25, 22, 28 | 3eqtr3d 2237 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠
‘(ringLMod‘𝐿))𝑦)) |
| 30 | | rlmscabas 14016 |
. . . . . 6
⊢ (𝐾 ∈ 𝑋 → (Base‘𝐾) =
(Base‘(Scalar‘(ringLMod‘𝐾)))) |
| 31 | 2, 30 | syl 14 |
. . . . 5
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(Scalar‘(ringLMod‘𝐾)))) |
| 32 | 1, 31 | eqtrd 2229 |
. . . 4
⊢ (𝜑 → 𝐵 =
(Base‘(Scalar‘(ringLMod‘𝐾)))) |
| 33 | | rlmscabas 14016 |
. . . . . 6
⊢ (𝐿 ∈ 𝑌 → (Base‘𝐿) =
(Base‘(Scalar‘(ringLMod‘𝐿)))) |
| 34 | 7, 33 | syl 14 |
. . . . 5
⊢ (𝜑 → (Base‘𝐿) =
(Base‘(Scalar‘(ringLMod‘𝐿)))) |
| 35 | 6, 34 | eqtrd 2229 |
. . . 4
⊢ (𝜑 → 𝐵 =
(Base‘(Scalar‘(ringLMod‘𝐿)))) |
| 36 | | rlmfn 14009 |
. . . . 5
⊢ ringLMod
Fn V |
| 37 | 2 | elexd 2776 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ V) |
| 38 | | funfvex 5575 |
. . . . . 6
⊢ ((Fun
ringLMod ∧ 𝐾 ∈ dom
ringLMod) → (ringLMod‘𝐾) ∈ V) |
| 39 | 38 | funfni 5358 |
. . . . 5
⊢
((ringLMod Fn V ∧ 𝐾 ∈ V) → (ringLMod‘𝐾) ∈ V) |
| 40 | 36, 37, 39 | sylancr 414 |
. . . 4
⊢ (𝜑 → (ringLMod‘𝐾) ∈ V) |
| 41 | 7 | elexd 2776 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ V) |
| 42 | | funfvex 5575 |
. . . . . 6
⊢ ((Fun
ringLMod ∧ 𝐿 ∈ dom
ringLMod) → (ringLMod‘𝐿) ∈ V) |
| 43 | 42 | funfni 5358 |
. . . . 5
⊢
((ringLMod Fn V ∧ 𝐿 ∈ V) → (ringLMod‘𝐿) ∈ V) |
| 44 | 36, 41, 43 | sylancr 414 |
. . . 4
⊢ (𝜑 → (ringLMod‘𝐿) ∈ V) |
| 45 | 5, 10, 11, 19, 24, 29, 32, 35, 40, 44 | lsspropdg 13987 |
. . 3
⊢ (𝜑 →
(LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿))) |
| 46 | | lidlvalg 14027 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾))) |
| 47 | 2, 46 | syl 14 |
. . 3
⊢ (𝜑 → (LIdeal‘𝐾) =
(LSubSp‘(ringLMod‘𝐾))) |
| 48 | | lidlvalg 14027 |
. . . 4
⊢ (𝐿 ∈ 𝑌 → (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿))) |
| 49 | 7, 48 | syl 14 |
. . 3
⊢ (𝜑 → (LIdeal‘𝐿) =
(LSubSp‘(ringLMod‘𝐿))) |
| 50 | 45, 47, 49 | 3eqtr4d 2239 |
. 2
⊢ (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿)) |
| 51 | 5, 10, 11, 19, 24, 29, 32, 35, 40, 44 | lsppropd 13988 |
. . 3
⊢ (𝜑 →
(LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿))) |
| 52 | | rspvalg 14028 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾))) |
| 53 | 2, 52 | syl 14 |
. . 3
⊢ (𝜑 → (RSpan‘𝐾) =
(LSpan‘(ringLMod‘𝐾))) |
| 54 | | rspvalg 14028 |
. . . 4
⊢ (𝐿 ∈ 𝑌 → (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿))) |
| 55 | 7, 54 | syl 14 |
. . 3
⊢ (𝜑 → (RSpan‘𝐿) =
(LSpan‘(ringLMod‘𝐿))) |
| 56 | 51, 53, 55 | 3eqtr4d 2239 |
. 2
⊢ (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿)) |
| 57 | 50, 56 | jca 306 |
1
⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |