ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlrsppropdg GIF version

Theorem lidlrsppropdg 14424
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1 (𝜑𝐵 = (Base‘𝐾))
lidlpropd.2 (𝜑𝐵 = (Base‘𝐿))
lidlpropd.3 (𝜑𝐵𝑊)
lidlpropd.4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lidlpropd.5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
lidlpropd.6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
lidlpropdg.k (𝜑𝐾𝑋)
lidlpropdg.l (𝜑𝐿𝑌)
Assertion
Ref Expression
lidlrsppropdg (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem lidlrsppropdg
StepHypRef Expression
1 lidlpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 lidlpropdg.k . . . . . 6 (𝜑𝐾𝑋)
3 rlmbasg 14384 . . . . . 6 (𝐾𝑋 → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
42, 3syl 14 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
51, 4eqtrd 2242 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐾)))
6 lidlpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
7 lidlpropdg.l . . . . . 6 (𝜑𝐿𝑌)
8 rlmbasg 14384 . . . . . 6 (𝐿𝑌 → (Base‘𝐿) = (Base‘(ringLMod‘𝐿)))
97, 8syl 14 . . . . 5 (𝜑 → (Base‘𝐿) = (Base‘(ringLMod‘𝐿)))
106, 9eqtrd 2242 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐿)))
11 lidlpropd.3 . . . 4 (𝜑𝐵𝑊)
12 lidlpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
13 rlmplusgg 14385 . . . . . . 7 (𝐾𝑋 → (+g𝐾) = (+g‘(ringLMod‘𝐾)))
142, 13syl 14 . . . . . 6 (𝜑 → (+g𝐾) = (+g‘(ringLMod‘𝐾)))
1514oveqdr 6002 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦))
16 rlmplusgg 14385 . . . . . . 7 (𝐿𝑌 → (+g𝐿) = (+g‘(ringLMod‘𝐿)))
177, 16syl 14 . . . . . 6 (𝜑 → (+g𝐿) = (+g‘(ringLMod‘𝐿)))
1817oveqdr 6002 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
1912, 15, 183eqtr3d 2250 . . . 4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
20 rlmvscag 14390 . . . . . . 7 (𝐾𝑋 → (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)))
212, 20syl 14 . . . . . 6 (𝜑 → (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)))
2221oveqdr 6002 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦))
23 lidlpropd.5 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
2422, 23eqeltrrd 2287 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊)
25 lidlpropd.6 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
26 rlmvscag 14390 . . . . . . 7 (𝐿𝑌 → (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)))
277, 26syl 14 . . . . . 6 (𝜑 → (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)))
2827oveqdr 6002 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
2925, 22, 283eqtr3d 2250 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
30 rlmscabas 14389 . . . . . 6 (𝐾𝑋 → (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))))
312, 30syl 14 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))))
321, 31eqtrd 2242 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾))))
33 rlmscabas 14389 . . . . . 6 (𝐿𝑌 → (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))))
347, 33syl 14 . . . . 5 (𝜑 → (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))))
356, 34eqtrd 2242 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿))))
36 rlmfn 14382 . . . . 5 ringLMod Fn V
372elexd 2793 . . . . 5 (𝜑𝐾 ∈ V)
38 funfvex 5620 . . . . . 6 ((Fun ringLMod ∧ 𝐾 ∈ dom ringLMod) → (ringLMod‘𝐾) ∈ V)
3938funfni 5399 . . . . 5 ((ringLMod Fn V ∧ 𝐾 ∈ V) → (ringLMod‘𝐾) ∈ V)
4036, 37, 39sylancr 414 . . . 4 (𝜑 → (ringLMod‘𝐾) ∈ V)
417elexd 2793 . . . . 5 (𝜑𝐿 ∈ V)
42 funfvex 5620 . . . . . 6 ((Fun ringLMod ∧ 𝐿 ∈ dom ringLMod) → (ringLMod‘𝐿) ∈ V)
4342funfni 5399 . . . . 5 ((ringLMod Fn V ∧ 𝐿 ∈ V) → (ringLMod‘𝐿) ∈ V)
4436, 41, 43sylancr 414 . . . 4 (𝜑 → (ringLMod‘𝐿) ∈ V)
455, 10, 11, 19, 24, 29, 32, 35, 40, 44lsspropdg 14360 . . 3 (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿)))
46 lidlvalg 14400 . . . 4 (𝐾𝑋 → (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)))
472, 46syl 14 . . 3 (𝜑 → (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)))
48 lidlvalg 14400 . . . 4 (𝐿𝑌 → (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)))
497, 48syl 14 . . 3 (𝜑 → (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)))
5045, 47, 493eqtr4d 2252 . 2 (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿))
515, 10, 11, 19, 24, 29, 32, 35, 40, 44lsppropd 14361 . . 3 (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿)))
52 rspvalg 14401 . . . 4 (𝐾𝑋 → (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)))
532, 52syl 14 . . 3 (𝜑 → (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)))
54 rspvalg 14401 . . . 4 (𝐿𝑌 → (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)))
557, 54syl 14 . . 3 (𝜑 → (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)))
5651, 53, 553eqtr4d 2252 . 2 (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿))
5750, 56jca 306 1 (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  Vcvv 2779  wss 3177   Fn wfn 5289  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  .rcmulr 13077  Scalarcsca 13079   ·𝑠 cvsca 13080  LSubSpclss 14281  LSpanclspn 14315  ringLModcrglmod 14363  LIdealclidl 14396  RSpancrsp 14397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-lssm 14282  df-lsp 14316  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-rsp 14399
This theorem is referenced by:  crngridl  14459
  Copyright terms: Public domain W3C validator