ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlrsppropdg GIF version

Theorem lidlrsppropdg 14301
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1 (𝜑𝐵 = (Base‘𝐾))
lidlpropd.2 (𝜑𝐵 = (Base‘𝐿))
lidlpropd.3 (𝜑𝐵𝑊)
lidlpropd.4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lidlpropd.5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
lidlpropd.6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
lidlpropdg.k (𝜑𝐾𝑋)
lidlpropdg.l (𝜑𝐿𝑌)
Assertion
Ref Expression
lidlrsppropdg (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem lidlrsppropdg
StepHypRef Expression
1 lidlpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 lidlpropdg.k . . . . . 6 (𝜑𝐾𝑋)
3 rlmbasg 14261 . . . . . 6 (𝐾𝑋 → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
42, 3syl 14 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
51, 4eqtrd 2239 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐾)))
6 lidlpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
7 lidlpropdg.l . . . . . 6 (𝜑𝐿𝑌)
8 rlmbasg 14261 . . . . . 6 (𝐿𝑌 → (Base‘𝐿) = (Base‘(ringLMod‘𝐿)))
97, 8syl 14 . . . . 5 (𝜑 → (Base‘𝐿) = (Base‘(ringLMod‘𝐿)))
106, 9eqtrd 2239 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐿)))
11 lidlpropd.3 . . . 4 (𝜑𝐵𝑊)
12 lidlpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
13 rlmplusgg 14262 . . . . . . 7 (𝐾𝑋 → (+g𝐾) = (+g‘(ringLMod‘𝐾)))
142, 13syl 14 . . . . . 6 (𝜑 → (+g𝐾) = (+g‘(ringLMod‘𝐾)))
1514oveqdr 5979 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦))
16 rlmplusgg 14262 . . . . . . 7 (𝐿𝑌 → (+g𝐿) = (+g‘(ringLMod‘𝐿)))
177, 16syl 14 . . . . . 6 (𝜑 → (+g𝐿) = (+g‘(ringLMod‘𝐿)))
1817oveqdr 5979 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
1912, 15, 183eqtr3d 2247 . . . 4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
20 rlmvscag 14267 . . . . . . 7 (𝐾𝑋 → (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)))
212, 20syl 14 . . . . . 6 (𝜑 → (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)))
2221oveqdr 5979 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦))
23 lidlpropd.5 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
2422, 23eqeltrrd 2284 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊)
25 lidlpropd.6 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
26 rlmvscag 14267 . . . . . . 7 (𝐿𝑌 → (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)))
277, 26syl 14 . . . . . 6 (𝜑 → (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)))
2827oveqdr 5979 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
2925, 22, 283eqtr3d 2247 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
30 rlmscabas 14266 . . . . . 6 (𝐾𝑋 → (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))))
312, 30syl 14 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))))
321, 31eqtrd 2239 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾))))
33 rlmscabas 14266 . . . . . 6 (𝐿𝑌 → (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))))
347, 33syl 14 . . . . 5 (𝜑 → (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))))
356, 34eqtrd 2239 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿))))
36 rlmfn 14259 . . . . 5 ringLMod Fn V
372elexd 2786 . . . . 5 (𝜑𝐾 ∈ V)
38 funfvex 5600 . . . . . 6 ((Fun ringLMod ∧ 𝐾 ∈ dom ringLMod) → (ringLMod‘𝐾) ∈ V)
3938funfni 5381 . . . . 5 ((ringLMod Fn V ∧ 𝐾 ∈ V) → (ringLMod‘𝐾) ∈ V)
4036, 37, 39sylancr 414 . . . 4 (𝜑 → (ringLMod‘𝐾) ∈ V)
417elexd 2786 . . . . 5 (𝜑𝐿 ∈ V)
42 funfvex 5600 . . . . . 6 ((Fun ringLMod ∧ 𝐿 ∈ dom ringLMod) → (ringLMod‘𝐿) ∈ V)
4342funfni 5381 . . . . 5 ((ringLMod Fn V ∧ 𝐿 ∈ V) → (ringLMod‘𝐿) ∈ V)
4436, 41, 43sylancr 414 . . . 4 (𝜑 → (ringLMod‘𝐿) ∈ V)
455, 10, 11, 19, 24, 29, 32, 35, 40, 44lsspropdg 14237 . . 3 (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿)))
46 lidlvalg 14277 . . . 4 (𝐾𝑋 → (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)))
472, 46syl 14 . . 3 (𝜑 → (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)))
48 lidlvalg 14277 . . . 4 (𝐿𝑌 → (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)))
497, 48syl 14 . . 3 (𝜑 → (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)))
5045, 47, 493eqtr4d 2249 . 2 (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿))
515, 10, 11, 19, 24, 29, 32, 35, 40, 44lsppropd 14238 . . 3 (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿)))
52 rspvalg 14278 . . . 4 (𝐾𝑋 → (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)))
532, 52syl 14 . . 3 (𝜑 → (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)))
54 rspvalg 14278 . . . 4 (𝐿𝑌 → (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)))
557, 54syl 14 . . 3 (𝜑 → (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)))
5651, 53, 553eqtr4d 2249 . 2 (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿))
5750, 56jca 306 1 (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  wss 3167   Fn wfn 5271  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Scalarcsca 12956   ·𝑠 cvsca 12957  LSubSpclss 14158  LSpanclspn 14192  ringLModcrglmod 14240  LIdealclidl 14273  RSpancrsp 14274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-lssm 14159  df-lsp 14193  df-sra 14241  df-rgmod 14242  df-lidl 14275  df-rsp 14276
This theorem is referenced by:  crngridl  14336
  Copyright terms: Public domain W3C validator