ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlrsppropdg GIF version

Theorem lidlrsppropdg 14127
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1 (𝜑𝐵 = (Base‘𝐾))
lidlpropd.2 (𝜑𝐵 = (Base‘𝐿))
lidlpropd.3 (𝜑𝐵𝑊)
lidlpropd.4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lidlpropd.5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
lidlpropd.6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
lidlpropdg.k (𝜑𝐾𝑋)
lidlpropdg.l (𝜑𝐿𝑌)
Assertion
Ref Expression
lidlrsppropdg (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem lidlrsppropdg
StepHypRef Expression
1 lidlpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 lidlpropdg.k . . . . . 6 (𝜑𝐾𝑋)
3 rlmbasg 14087 . . . . . 6 (𝐾𝑋 → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
42, 3syl 14 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(ringLMod‘𝐾)))
51, 4eqtrd 2229 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐾)))
6 lidlpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
7 lidlpropdg.l . . . . . 6 (𝜑𝐿𝑌)
8 rlmbasg 14087 . . . . . 6 (𝐿𝑌 → (Base‘𝐿) = (Base‘(ringLMod‘𝐿)))
97, 8syl 14 . . . . 5 (𝜑 → (Base‘𝐿) = (Base‘(ringLMod‘𝐿)))
106, 9eqtrd 2229 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐿)))
11 lidlpropd.3 . . . 4 (𝜑𝐵𝑊)
12 lidlpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
13 rlmplusgg 14088 . . . . . . 7 (𝐾𝑋 → (+g𝐾) = (+g‘(ringLMod‘𝐾)))
142, 13syl 14 . . . . . 6 (𝜑 → (+g𝐾) = (+g‘(ringLMod‘𝐾)))
1514oveqdr 5953 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦))
16 rlmplusgg 14088 . . . . . . 7 (𝐿𝑌 → (+g𝐿) = (+g‘(ringLMod‘𝐿)))
177, 16syl 14 . . . . . 6 (𝜑 → (+g𝐿) = (+g‘(ringLMod‘𝐿)))
1817oveqdr 5953 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
1912, 15, 183eqtr3d 2237 . . . 4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
20 rlmvscag 14093 . . . . . . 7 (𝐾𝑋 → (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)))
212, 20syl 14 . . . . . 6 (𝜑 → (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)))
2221oveqdr 5953 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦))
23 lidlpropd.5 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
2422, 23eqeltrrd 2274 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊)
25 lidlpropd.6 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
26 rlmvscag 14093 . . . . . . 7 (𝐿𝑌 → (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)))
277, 26syl 14 . . . . . 6 (𝜑 → (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)))
2827oveqdr 5953 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
2925, 22, 283eqtr3d 2237 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
30 rlmscabas 14092 . . . . . 6 (𝐾𝑋 → (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))))
312, 30syl 14 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))))
321, 31eqtrd 2229 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾))))
33 rlmscabas 14092 . . . . . 6 (𝐿𝑌 → (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))))
347, 33syl 14 . . . . 5 (𝜑 → (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))))
356, 34eqtrd 2229 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿))))
36 rlmfn 14085 . . . . 5 ringLMod Fn V
372elexd 2776 . . . . 5 (𝜑𝐾 ∈ V)
38 funfvex 5578 . . . . . 6 ((Fun ringLMod ∧ 𝐾 ∈ dom ringLMod) → (ringLMod‘𝐾) ∈ V)
3938funfni 5361 . . . . 5 ((ringLMod Fn V ∧ 𝐾 ∈ V) → (ringLMod‘𝐾) ∈ V)
4036, 37, 39sylancr 414 . . . 4 (𝜑 → (ringLMod‘𝐾) ∈ V)
417elexd 2776 . . . . 5 (𝜑𝐿 ∈ V)
42 funfvex 5578 . . . . . 6 ((Fun ringLMod ∧ 𝐿 ∈ dom ringLMod) → (ringLMod‘𝐿) ∈ V)
4342funfni 5361 . . . . 5 ((ringLMod Fn V ∧ 𝐿 ∈ V) → (ringLMod‘𝐿) ∈ V)
4436, 41, 43sylancr 414 . . . 4 (𝜑 → (ringLMod‘𝐿) ∈ V)
455, 10, 11, 19, 24, 29, 32, 35, 40, 44lsspropdg 14063 . . 3 (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿)))
46 lidlvalg 14103 . . . 4 (𝐾𝑋 → (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)))
472, 46syl 14 . . 3 (𝜑 → (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)))
48 lidlvalg 14103 . . . 4 (𝐿𝑌 → (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)))
497, 48syl 14 . . 3 (𝜑 → (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)))
5045, 47, 493eqtr4d 2239 . 2 (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿))
515, 10, 11, 19, 24, 29, 32, 35, 40, 44lsppropd 14064 . . 3 (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿)))
52 rspvalg 14104 . . . 4 (𝐾𝑋 → (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)))
532, 52syl 14 . . 3 (𝜑 → (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)))
54 rspvalg 14104 . . . 4 (𝐿𝑌 → (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)))
557, 54syl 14 . . 3 (𝜑 → (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)))
5651, 53, 553eqtr4d 2239 . 2 (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿))
5750, 56jca 306 1 (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  Scalarcsca 12783   ·𝑠 cvsca 12784  LSubSpclss 13984  LSpanclspn 14018  ringLModcrglmod 14066  LIdealclidl 14099  RSpancrsp 14100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-lssm 13985  df-lsp 14019  df-sra 14067  df-rgmod 14068  df-lidl 14101  df-rsp 14102
This theorem is referenced by:  crngridl  14162
  Copyright terms: Public domain W3C validator