Proof of Theorem lidlrsppropdg
Step | Hyp | Ref
| Expression |
1 | | lidlpropd.1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | lidlpropdg.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
3 | | rlmbasg 13788 |
. . . . . 6
⊢ (𝐾 ∈ 𝑋 → (Base‘𝐾) = (Base‘(ringLMod‘𝐾))) |
4 | 2, 3 | syl 14 |
. . . . 5
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(ringLMod‘𝐾))) |
5 | 1, 4 | eqtrd 2222 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐾))) |
6 | | lidlpropd.2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
7 | | lidlpropdg.l |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ 𝑌) |
8 | | rlmbasg 13788 |
. . . . . 6
⊢ (𝐿 ∈ 𝑌 → (Base‘𝐿) = (Base‘(ringLMod‘𝐿))) |
9 | 7, 8 | syl 14 |
. . . . 5
⊢ (𝜑 → (Base‘𝐿) =
(Base‘(ringLMod‘𝐿))) |
10 | 6, 9 | eqtrd 2222 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐿))) |
11 | | lidlpropd.3 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
12 | | lidlpropd.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
13 | | rlmplusgg 13789 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑋 → (+g‘𝐾) =
(+g‘(ringLMod‘𝐾))) |
14 | 2, 13 | syl 14 |
. . . . . 6
⊢ (𝜑 → (+g‘𝐾) =
(+g‘(ringLMod‘𝐾))) |
15 | 14 | oveqdr 5925 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦)) |
16 | | rlmplusgg 13789 |
. . . . . . 7
⊢ (𝐿 ∈ 𝑌 → (+g‘𝐿) =
(+g‘(ringLMod‘𝐿))) |
17 | 7, 16 | syl 14 |
. . . . . 6
⊢ (𝜑 → (+g‘𝐿) =
(+g‘(ringLMod‘𝐿))) |
18 | 17 | oveqdr 5925 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
19 | 12, 15, 18 | 3eqtr3d 2230 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
20 | | rlmvscag 13794 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑋 → (.r‘𝐾) = (
·𝑠 ‘(ringLMod‘𝐾))) |
21 | 2, 20 | syl 14 |
. . . . . 6
⊢ (𝜑 → (.r‘𝐾) = (
·𝑠 ‘(ringLMod‘𝐾))) |
22 | 21 | oveqdr 5925 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥( ·𝑠
‘(ringLMod‘𝐾))𝑦)) |
23 | | lidlpropd.5 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) |
24 | 22, 23 | eqeltrrd 2267 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘(ringLMod‘𝐾))𝑦) ∈ 𝑊) |
25 | | lidlpropd.6 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
26 | | rlmvscag 13794 |
. . . . . . 7
⊢ (𝐿 ∈ 𝑌 → (.r‘𝐿) = (
·𝑠 ‘(ringLMod‘𝐿))) |
27 | 7, 26 | syl 14 |
. . . . . 6
⊢ (𝜑 → (.r‘𝐿) = (
·𝑠 ‘(ringLMod‘𝐿))) |
28 | 27 | oveqdr 5925 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐿)𝑦) = (𝑥( ·𝑠
‘(ringLMod‘𝐿))𝑦)) |
29 | 25, 22, 28 | 3eqtr3d 2230 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠
‘(ringLMod‘𝐿))𝑦)) |
30 | | rlmscabas 13793 |
. . . . . 6
⊢ (𝐾 ∈ 𝑋 → (Base‘𝐾) =
(Base‘(Scalar‘(ringLMod‘𝐾)))) |
31 | 2, 30 | syl 14 |
. . . . 5
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(Scalar‘(ringLMod‘𝐾)))) |
32 | 1, 31 | eqtrd 2222 |
. . . 4
⊢ (𝜑 → 𝐵 =
(Base‘(Scalar‘(ringLMod‘𝐾)))) |
33 | | rlmscabas 13793 |
. . . . . 6
⊢ (𝐿 ∈ 𝑌 → (Base‘𝐿) =
(Base‘(Scalar‘(ringLMod‘𝐿)))) |
34 | 7, 33 | syl 14 |
. . . . 5
⊢ (𝜑 → (Base‘𝐿) =
(Base‘(Scalar‘(ringLMod‘𝐿)))) |
35 | 6, 34 | eqtrd 2222 |
. . . 4
⊢ (𝜑 → 𝐵 =
(Base‘(Scalar‘(ringLMod‘𝐿)))) |
36 | | rlmfn 13786 |
. . . . 5
⊢ ringLMod
Fn V |
37 | 2 | elexd 2765 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ V) |
38 | | funfvex 5551 |
. . . . . 6
⊢ ((Fun
ringLMod ∧ 𝐾 ∈ dom
ringLMod) → (ringLMod‘𝐾) ∈ V) |
39 | 38 | funfni 5335 |
. . . . 5
⊢
((ringLMod Fn V ∧ 𝐾 ∈ V) → (ringLMod‘𝐾) ∈ V) |
40 | 36, 37, 39 | sylancr 414 |
. . . 4
⊢ (𝜑 → (ringLMod‘𝐾) ∈ V) |
41 | 7 | elexd 2765 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ V) |
42 | | funfvex 5551 |
. . . . . 6
⊢ ((Fun
ringLMod ∧ 𝐿 ∈ dom
ringLMod) → (ringLMod‘𝐿) ∈ V) |
43 | 42 | funfni 5335 |
. . . . 5
⊢
((ringLMod Fn V ∧ 𝐿 ∈ V) → (ringLMod‘𝐿) ∈ V) |
44 | 36, 41, 43 | sylancr 414 |
. . . 4
⊢ (𝜑 → (ringLMod‘𝐿) ∈ V) |
45 | 5, 10, 11, 19, 24, 29, 32, 35, 40, 44 | lsspropdg 13764 |
. . 3
⊢ (𝜑 →
(LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿))) |
46 | | lidlvalg 13804 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾))) |
47 | 2, 46 | syl 14 |
. . 3
⊢ (𝜑 → (LIdeal‘𝐾) =
(LSubSp‘(ringLMod‘𝐾))) |
48 | | lidlvalg 13804 |
. . . 4
⊢ (𝐿 ∈ 𝑌 → (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿))) |
49 | 7, 48 | syl 14 |
. . 3
⊢ (𝜑 → (LIdeal‘𝐿) =
(LSubSp‘(ringLMod‘𝐿))) |
50 | 45, 47, 49 | 3eqtr4d 2232 |
. 2
⊢ (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿)) |
51 | 5, 10, 11, 19, 24, 29, 32, 35, 40, 44 | lsppropd 13765 |
. . 3
⊢ (𝜑 →
(LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿))) |
52 | | rspvalg 13805 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾))) |
53 | 2, 52 | syl 14 |
. . 3
⊢ (𝜑 → (RSpan‘𝐾) =
(LSpan‘(ringLMod‘𝐾))) |
54 | | rspvalg 13805 |
. . . 4
⊢ (𝐿 ∈ 𝑌 → (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿))) |
55 | 7, 54 | syl 14 |
. . 3
⊢ (𝜑 → (RSpan‘𝐿) =
(LSpan‘(ringLMod‘𝐿))) |
56 | 51, 53, 55 | 3eqtr4d 2232 |
. 2
⊢ (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿)) |
57 | 50, 56 | jca 306 |
1
⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |