ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngridl Unicode version

Theorem crngridl 13869
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
crng2idl.i  |-  I  =  (LIdeal `  R )
crngridl.o  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
crngridl  |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )

Proof of Theorem crngridl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crng2idl.i . 2  |-  I  =  (LIdeal `  R )
2 eqidd 2190 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
3 crngridl.o . . . . 5  |-  O  =  (oppr
`  R )
4 eqid 2189 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
53, 4opprbasg 13450 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  O )
)
6 ssv 3192 . . . . 5  |-  ( Base `  R )  C_  _V
76a1i 9 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  C_  _V )
8 eqid 2189 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
93, 8oppraddg 13451 . . . . 5  |-  ( R  e.  CRing  ->  ( +g  `  R )  =  ( +g  `  O ) )
109oveqdr 5928 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  R ) y )  =  ( x ( +g  `  O
) y ) )
11 simprl 529 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  x  e.  ( Base `  R ) )
12 mulrslid 12654 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
1312slotex 12550 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  R )  e.  _V )
1413adantr 276 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( .r `  R
)  e.  _V )
15 simprr 531 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
y  e.  ( Base `  R ) )
16 ovexg 5934 . . . . 5  |-  ( ( x  e.  ( Base `  R )  /\  ( .r `  R )  e. 
_V  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  R
) y )  e. 
_V )
1711, 14, 15, 16syl3anc 1249 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( .r
`  R ) y )  e.  _V )
18 eqid 2189 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
19 eqid 2189 . . . . . 6  |-  ( .r
`  O )  =  ( .r `  O
)
204, 18, 3, 19crngoppr 13447 . . . . 5  |-  ( ( R  e.  CRing  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  R
) y )  =  ( x ( .r
`  O ) y ) )
21203expb 1206 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( .r
`  R ) y )  =  ( x ( .r `  O
) y ) )
22 id 19 . . . 4  |-  ( R  e.  CRing  ->  R  e.  CRing
)
233opprex 13448 . . . 4  |-  ( R  e.  CRing  ->  O  e.  _V )
242, 5, 7, 10, 17, 21, 22, 23lidlrsppropdg 13836 . . 3  |-  ( R  e.  CRing  ->  ( (LIdeal `  R )  =  (LIdeal `  O )  /\  (RSpan `  R )  =  (RSpan `  O ) ) )
2524simpld 112 . 2  |-  ( R  e.  CRing  ->  (LIdeal `  R
)  =  (LIdeal `  O ) )
261, 25eqtrid 2234 1  |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752    C_ wss 3144   ` cfv 5238  (class class class)co 5900   Basecbs 12523   +g cplusg 12600   .rcmulr 12601   CRingccrg 13376  opprcoppr 13442  LIdealclidl 13808  RSpancrsp 13809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-tpos 6274  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-5 9016  df-6 9017  df-7 9018  df-8 9019  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-mulr 12614  df-sca 12616  df-vsca 12617  df-ip 12618  df-cmn 13250  df-mgp 13300  df-cring 13378  df-oppr 13443  df-lssm 13694  df-lsp 13728  df-sra 13776  df-rgmod 13777  df-lidl 13810  df-rsp 13811
This theorem is referenced by:  crng2idl  13870
  Copyright terms: Public domain W3C validator