ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngridl Unicode version

Theorem crngridl 14026
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
crng2idl.i  |-  I  =  (LIdeal `  R )
crngridl.o  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
crngridl  |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )

Proof of Theorem crngridl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crng2idl.i . 2  |-  I  =  (LIdeal `  R )
2 eqidd 2194 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
3 crngridl.o . . . . 5  |-  O  =  (oppr
`  R )
4 eqid 2193 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
53, 4opprbasg 13571 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  O )
)
6 ssv 3201 . . . . 5  |-  ( Base `  R )  C_  _V
76a1i 9 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  C_  _V )
8 eqid 2193 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
93, 8oppraddg 13572 . . . . 5  |-  ( R  e.  CRing  ->  ( +g  `  R )  =  ( +g  `  O ) )
109oveqdr 5946 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  R ) y )  =  ( x ( +g  `  O
) y ) )
11 simprl 529 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  x  e.  ( Base `  R ) )
12 mulrslid 12749 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
1312slotex 12645 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  R )  e.  _V )
1413adantr 276 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( .r `  R
)  e.  _V )
15 simprr 531 . . . . 5  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
y  e.  ( Base `  R ) )
16 ovexg 5952 . . . . 5  |-  ( ( x  e.  ( Base `  R )  /\  ( .r `  R )  e. 
_V  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  R
) y )  e. 
_V )
1711, 14, 15, 16syl3anc 1249 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( .r
`  R ) y )  e.  _V )
18 eqid 2193 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
19 eqid 2193 . . . . . 6  |-  ( .r
`  O )  =  ( .r `  O
)
204, 18, 3, 19crngoppr 13568 . . . . 5  |-  ( ( R  e.  CRing  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  R
) y )  =  ( x ( .r
`  O ) y ) )
21203expb 1206 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( .r
`  R ) y )  =  ( x ( .r `  O
) y ) )
22 id 19 . . . 4  |-  ( R  e.  CRing  ->  R  e.  CRing
)
233opprex 13569 . . . 4  |-  ( R  e.  CRing  ->  O  e.  _V )
242, 5, 7, 10, 17, 21, 22, 23lidlrsppropdg 13991 . . 3  |-  ( R  e.  CRing  ->  ( (LIdeal `  R )  =  (LIdeal `  O )  /\  (RSpan `  R )  =  (RSpan `  O ) ) )
2524simpld 112 . 2  |-  ( R  e.  CRing  ->  (LIdeal `  R
)  =  (LIdeal `  O ) )
261, 25eqtrid 2238 1  |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   CRingccrg 13493  opprcoppr 13563  LIdealclidl 13963  RSpancrsp 13964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-cmn 13356  df-mgp 13417  df-cring 13495  df-oppr 13564  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-rsp 13966
This theorem is referenced by:  crng2idl  14027
  Copyright terms: Public domain W3C validator