ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climub Unicode version

Theorem climub 11855
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
climub.2  |-  ( ph  ->  N  e.  Z )
climub.3  |-  ( ph  ->  F  ~~>  A )
climub.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climub.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
Assertion
Ref Expression
climub  |-  ( ph  ->  ( F `  N
)  <_  A )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem climub
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
2 climub.2 . . . 4  |-  ( ph  ->  N  e.  Z )
3 clim2iser.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
42, 3eleqtrdi 2322 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9731 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . 2  |-  ( ph  ->  N  e.  ZZ )
7 fveq2 5627 . . . . . 6  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
87eleq1d 2298 . . . . 5  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR  <->  ( F `  N )  e.  RR ) )
98imbi2d 230 . . . 4  |-  ( k  =  N  ->  (
( ph  ->  ( F `
 k )  e.  RR )  <->  ( ph  ->  ( F `  N
)  e.  RR ) ) )
10 climub.4 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
1110expcom 116 . . . 4  |-  ( k  e.  Z  ->  ( ph  ->  ( F `  k )  e.  RR ) )
129, 11vtoclga 2867 . . 3  |-  ( N  e.  Z  ->  ( ph  ->  ( F `  N )  e.  RR ) )
132, 12mpcom 36 . 2  |-  ( ph  ->  ( F `  N
)  e.  RR )
14 climub.3 . 2  |-  ( ph  ->  F  ~~>  A )
153uztrn2 9740 . . . 4  |-  ( ( N  e.  Z  /\  j  e.  ( ZZ>= `  N ) )  -> 
j  e.  Z )
162, 15sylan 283 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  N )
)  ->  j  e.  Z )
17 fveq2 5627 . . . . . . 7  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1817eleq1d 2298 . . . . . 6  |-  ( k  =  j  ->  (
( F `  k
)  e.  RR  <->  ( F `  j )  e.  RR ) )
1918imbi2d 230 . . . . 5  |-  ( k  =  j  ->  (
( ph  ->  ( F `
 k )  e.  RR )  <->  ( ph  ->  ( F `  j
)  e.  RR ) ) )
2019, 11vtoclga 2867 . . . 4  |-  ( j  e.  Z  ->  ( ph  ->  ( F `  j )  e.  RR ) )
2120impcom 125 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  e.  RR )
2216, 21syldan 282 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  N )
)  ->  ( F `  j )  e.  RR )
23 simpr 110 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  N )
)  ->  j  e.  ( ZZ>= `  N )
)
24 elfzuz 10217 . . . . 5  |-  ( k  e.  ( N ... j )  ->  k  e.  ( ZZ>= `  N )
)
253uztrn2 9740 . . . . . . 7  |-  ( ( N  e.  Z  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  Z )
262, 25sylan 283 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  Z )
2726, 10syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  e.  RR )
2824, 27sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( N ... j ) )  ->  ( F `  k )  e.  RR )
2928adantlr 477 . . 3  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  N )
)  /\  k  e.  ( N ... j ) )  ->  ( F `  k )  e.  RR )
30 elfzuz 10217 . . . . 5  |-  ( k  e.  ( N ... ( j  -  1 ) )  ->  k  e.  ( ZZ>= `  N )
)
31 climub.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
3226, 31syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
3330, 32sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( N ... ( j  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
3433adantlr 477 . . 3  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  N )
)  /\  k  e.  ( N ... ( j  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
3523, 29, 34monoord 10707 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  N )
)  ->  ( F `  N )  <_  ( F `  j )
)
361, 6, 13, 14, 22, 35climlec2 11852 1  |-  ( ph  ->  ( F `  N
)  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002    <_ cle 8182    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-fz 10205  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790
This theorem is referenced by:  climserle  11856
  Copyright terms: Public domain W3C validator