ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climub Unicode version

Theorem climub 11106
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
climub.2  |-  ( ph  ->  N  e.  Z )
climub.3  |-  ( ph  ->  F  ~~>  A )
climub.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climub.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
Assertion
Ref Expression
climub  |-  ( ph  ->  ( F `  N
)  <_  A )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem climub
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 eqid 2137 . 2  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
2 climub.2 . . . 4  |-  ( ph  ->  N  e.  Z )
3 clim2iser.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
42, 3eleqtrdi 2230 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9328 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . 2  |-  ( ph  ->  N  e.  ZZ )
7 fveq2 5414 . . . . . 6  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
87eleq1d 2206 . . . . 5  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR  <->  ( F `  N )  e.  RR ) )
98imbi2d 229 . . . 4  |-  ( k  =  N  ->  (
( ph  ->  ( F `
 k )  e.  RR )  <->  ( ph  ->  ( F `  N
)  e.  RR ) ) )
10 climub.4 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
1110expcom 115 . . . 4  |-  ( k  e.  Z  ->  ( ph  ->  ( F `  k )  e.  RR ) )
129, 11vtoclga 2747 . . 3  |-  ( N  e.  Z  ->  ( ph  ->  ( F `  N )  e.  RR ) )
132, 12mpcom 36 . 2  |-  ( ph  ->  ( F `  N
)  e.  RR )
14 climub.3 . 2  |-  ( ph  ->  F  ~~>  A )
153uztrn2 9336 . . . 4  |-  ( ( N  e.  Z  /\  j  e.  ( ZZ>= `  N ) )  -> 
j  e.  Z )
162, 15sylan 281 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  N )
)  ->  j  e.  Z )
17 fveq2 5414 . . . . . . 7  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1817eleq1d 2206 . . . . . 6  |-  ( k  =  j  ->  (
( F `  k
)  e.  RR  <->  ( F `  j )  e.  RR ) )
1918imbi2d 229 . . . . 5  |-  ( k  =  j  ->  (
( ph  ->  ( F `
 k )  e.  RR )  <->  ( ph  ->  ( F `  j
)  e.  RR ) ) )
2019, 11vtoclga 2747 . . . 4  |-  ( j  e.  Z  ->  ( ph  ->  ( F `  j )  e.  RR ) )
2120impcom 124 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  e.  RR )
2216, 21syldan 280 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  N )
)  ->  ( F `  j )  e.  RR )
23 simpr 109 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  N )
)  ->  j  e.  ( ZZ>= `  N )
)
24 elfzuz 9795 . . . . 5  |-  ( k  e.  ( N ... j )  ->  k  e.  ( ZZ>= `  N )
)
253uztrn2 9336 . . . . . . 7  |-  ( ( N  e.  Z  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  Z )
262, 25sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  Z )
2726, 10syldan 280 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  e.  RR )
2824, 27sylan2 284 . . . 4  |-  ( (
ph  /\  k  e.  ( N ... j ) )  ->  ( F `  k )  e.  RR )
2928adantlr 468 . . 3  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  N )
)  /\  k  e.  ( N ... j ) )  ->  ( F `  k )  e.  RR )
30 elfzuz 9795 . . . . 5  |-  ( k  e.  ( N ... ( j  -  1 ) )  ->  k  e.  ( ZZ>= `  N )
)
31 climub.5 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( F `  (
k  +  1 ) ) )
3226, 31syldan 280 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
3330, 32sylan2 284 . . . 4  |-  ( (
ph  /\  k  e.  ( N ... ( j  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
3433adantlr 468 . . 3  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  N )
)  /\  k  e.  ( N ... ( j  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
3523, 29, 34monoord 10242 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  N )
)  ->  ( F `  N )  <_  ( F `  j )
)
361, 6, 13, 14, 22, 35climlec2 11103 1  |-  ( ph  ->  ( F `  N
)  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   RRcr 7612   1c1 7614    + caddc 7616    <_ cle 7794    - cmin 7926   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783    ~~> cli 11040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-fz 9784  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041
This theorem is referenced by:  climserle  11107
  Copyright terms: Public domain W3C validator