| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplsubgfileminv | Unicode version | ||
| Description: Lemma for mplsubgfi 14673. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.) |
| Ref | Expression |
|---|---|
| mplsubg.s |
|
| mplsubg.p |
|
| mplsubg.u |
|
| mplsubg.i |
|
| mplsubg.r |
|
| mplsubgfileminv.x |
|
| mplsubgfileminv.inv |
|
| Ref | Expression |
|---|---|
| mplsubgfileminv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s |
. . . 4
| |
| 2 | mplsubg.i |
. . . 4
| |
| 3 | mplsubg.r |
. . . 4
| |
| 4 | eqid 2229 |
. . . 4
| |
| 5 | eqid 2229 |
. . . 4
| |
| 6 | eqid 2229 |
. . . 4
| |
| 7 | mplsubgfileminv.inv |
. . . 4
| |
| 8 | mplsubg.p |
. . . . . 6
| |
| 9 | mplsubg.u |
. . . . . 6
| |
| 10 | 8, 1, 9, 6 | mplbasss 14668 |
. . . . 5
|
| 11 | mplsubgfileminv.x |
. . . . 5
| |
| 12 | 10, 11 | sselid 3222 |
. . . 4
|
| 13 | 1, 2, 3, 4, 5, 6, 7, 12 | psrneg 14659 |
. . 3
|
| 14 | 1, 2, 3, 4, 5, 6, 12 | psrnegcl 14655 |
. . 3
|
| 15 | 13, 14 | eqeltrd 2306 |
. 2
|
| 16 | eqid 2229 |
. . . . . . 7
| |
| 17 | 8, 1, 6, 16, 9 | mplelbascoe 14664 |
. . . . . 6
|
| 18 | 2, 3, 17 | syl2anc 411 |
. . . . 5
|
| 19 | 11, 18 | mpbid 147 |
. . . 4
|
| 20 | 19 | simprd 114 |
. . 3
|
| 21 | 13 | fveq1d 5631 |
. . . . . . . . 9
|
| 22 | 21 | ad2antrr 488 |
. . . . . . . 8
|
| 23 | eqid 2229 |
. . . . . . . . . . 11
| |
| 24 | 1, 23, 2, 6, 12 | psrelbasfi 14648 |
. . . . . . . . . 10
|
| 25 | 24 | ad2antrr 488 |
. . . . . . . . 9
|
| 26 | simplr 528 |
. . . . . . . . 9
| |
| 27 | fvco3 5707 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | syl2anc 411 |
. . . . . . . 8
|
| 29 | simpr 110 |
. . . . . . . . . 10
| |
| 30 | 29 | fveq2d 5633 |
. . . . . . . . 9
|
| 31 | 16, 5 | grpinvid 13601 |
. . . . . . . . . . 11
|
| 32 | 3, 31 | syl 14 |
. . . . . . . . . 10
|
| 33 | 32 | ad2antrr 488 |
. . . . . . . . 9
|
| 34 | 30, 33 | eqtrd 2262 |
. . . . . . . 8
|
| 35 | 22, 28, 34 | 3eqtrd 2266 |
. . . . . . 7
|
| 36 | 35 | ex 115 |
. . . . . 6
|
| 37 | 36 | imim2d 54 |
. . . . 5
|
| 38 | 37 | ralimdva 2597 |
. . . 4
|
| 39 | 38 | reximdv 2631 |
. . 3
|
| 40 | 20, 39 | mpd 13 |
. 2
|
| 41 | 8, 1, 6, 16, 9 | mplelbascoe 14664 |
. . 3
|
| 42 | 2, 3, 41 | syl2anc 411 |
. 2
|
| 43 | 15, 40, 42 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-1o 6568 df-er 6688 df-map 6805 df-ixp 6854 df-en 6896 df-fin 6898 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-fz 10213 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 df-hom 13142 df-cco 13143 df-rest 13282 df-topn 13283 df-0g 13299 df-topgen 13301 df-pt 13302 df-prds 13308 df-pws 13331 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-psr 14635 df-mplcoe 14636 |
| This theorem is referenced by: mplsubgfi 14673 |
| Copyright terms: Public domain | W3C validator |