ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdssca Unicode version

Theorem prdssca 12979
Description: Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
Assertion
Ref Expression
prdssca  |-  ( ph  ->  S  =  (Scalar `  P ) )

Proof of Theorem prdssca
Dummy variables  a  c  d  e  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 prdsbas.s . . 3  |-  ( ph  ->  S  e.  V )
3 prdsbas.r . . 3  |-  ( ph  ->  R  e.  W )
4 eqid 2196 . . 3  |-  (Scalar `  P )  =  (Scalar `  P )
5 scaid 12856 . . 3  |- Scalar  = Slot  (Scalar ` 
ndx )
6 scaslid 12857 . . . 4  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
76simpri 113 . . 3  |-  (Scalar `  ndx )  e.  NN
8 snsstp1 3773 . . . . . 6  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. }
9 ssun2 3328 . . . . . 6  |-  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
108, 9sstri 3193 . . . . 5  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
11 ssun1 3327 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) , 
X_ x  e.  dom  R ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
1210, 11sstri 3193 . . . 4  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  ( ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
13 eqid 2196 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
14 eqidd 2197 . . . . 5  |-  ( ph  ->  dom  R  =  dom  R )
15 eqidd 2197 . . . . 5  |-  ( ph  -> 
X_ x  e.  dom  R ( Base `  ( R `  x )
)  =  X_ x  e.  dom  R ( Base `  ( R `  x
) ) )
16 eqidd 2197 . . . . 5  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
17 eqidd 2197 . . . . 5  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
18 eqidd 2197 . . . . 5  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) )
19 eqidd 2197 . . . . 5  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( S  gsumg  ( x  e.  dom  R  |->  ( ( f `  x
) ( .i `  ( R `  x ) ) ( g `  x ) ) ) ) ) )
20 eqidd 2197 . . . . 5  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
21 eqidd 2197 . . . . 5  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) }  =  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } )
22 eqidd 2197 . . . . 5  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  dom  R  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
23 eqidd 2197 . . . . 5  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) )
24 eqidd 2197 . . . . 5  |-  ( ph  ->  ( a  e.  (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( X_ x  e. 
dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
251, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2, 3prdsval 12977 . . . 4  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( ( 2nd `  a ) ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) c ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
2612, 25sseqtrrid 3235 . . 3  |-  ( ph  ->  { <. (Scalar `  ndx ) ,  S >. } 
C_  P )
271, 2, 3, 4, 5, 7, 2, 26prdsbaslemss 12978 . 2  |-  ( ph  ->  (Scalar `  P )  =  S )
2827eqcomd 2202 1  |-  ( ph  ->  S  =  (Scalar `  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475    u. cun 3155    C_ wss 3157   {csn 3623   {cpr 3624   {ctp 3625   <.cop 3626   class class class wbr 4034   {copab 4094    |-> cmpt 4095    X. cxp 4662   dom cdm 4664   ran crn 4665    o. ccom 4668   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206   X_cixp 6766   supcsup 7057   0cc0 7898   RR*cxr 8079    < clt 8080   NNcn 9009   ndxcnx 12702  Slot cslot 12704   Basecbs 12705   +g cplusg 12782   .rcmulr 12783  Scalarcsca 12785   .scvsca 12786   .icip 12787  TopSetcts 12788   lecple 12789   distcds 12791   Hom chom 12793  compcco 12794   TopOpenctopn 12944   Xt_cpt 12959    gsumg cgsu 12961   X_scprds 12969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-fz 10103  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-hom 12806  df-cco 12807  df-rest 12945  df-topn 12946  df-topgen 12964  df-pt 12965  df-prds 12971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator