ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem2 GIF version

Theorem prodrbdclem2 11373
Description: Lemma for prodrbdc 11374. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.4 (𝜑𝑀 ∈ ℤ)
prodrb.5 (𝜑𝑁 ∈ ℤ)
prodrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
prodrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
prodrbdc.mdc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
prodrbdc.ndc ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
Assertion
Ref Expression
prodrbdclem2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodrbdclem2
StepHypRef Expression
1 prodrb.5 . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 274 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 10250 . . 3 seq𝑀( · , 𝐹) ∈ V
4 climres 11103 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑀( · , 𝐹) ∈ V) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 410 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
6 prodrb.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑁))
7 prodmo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
8 prodmo.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 469 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 prodrbdc.mdc . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
1110adantlr 469 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
12 simpr 109 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
137, 9, 11, 12prodrbdclem 11371 . . . 4 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
146, 13mpidan 420 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
1514breq1d 3946 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
165, 15bitr3d 189 1 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 820   = wceq 1332  wcel 1481  Vcvv 2689  wss 3075  ifcif 3478   class class class wbr 3936  cmpt 3996  cres 4548  cfv 5130  cc 7641  1c1 7644   · cmul 7648  cz 9077  cuz 9349  seqcseq 10248  cli 11078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-inn 8744  df-n0 9001  df-z 9078  df-uz 9350  df-fz 9821  df-fzo 9950  df-seqfrec 10249  df-clim 11079
This theorem is referenced by:  prodrbdc  11374
  Copyright terms: Public domain W3C validator