ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodrbdclem2 GIF version

Theorem prodrbdclem2 11500
Description: Lemma for prodrbdc 11501. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.4 (𝜑𝑀 ∈ ℤ)
prodrb.5 (𝜑𝑁 ∈ ℤ)
prodrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
prodrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
prodrbdc.mdc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
prodrbdc.ndc ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
Assertion
Ref Expression
prodrbdclem2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodrbdclem2
StepHypRef Expression
1 prodrb.5 . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 274 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 10372 . . 3 seq𝑀( · , 𝐹) ∈ V
4 climres 11230 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑀( · , 𝐹) ∈ V) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 410 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
6 prodrb.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑁))
7 prodmo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
8 prodmo.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 469 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 prodrbdc.mdc . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
1110adantlr 469 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
12 simpr 109 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
137, 9, 11, 12prodrbdclem 11498 . . . 4 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
146, 13mpidan 420 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
1514breq1d 3986 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
165, 15bitr3d 189 1 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1342  wcel 2135  Vcvv 2721  wss 3111  ifcif 3515   class class class wbr 3976  cmpt 4037  cres 4600  cfv 5182  cc 7742  1c1 7745   · cmul 7749  cz 9182  cuz 9457  seqcseq 10370  cli 11205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936  df-fzo 10068  df-seqfrec 10371  df-clim 11206
This theorem is referenced by:  prodrbdc  11501
  Copyright terms: Public domain W3C validator