ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemcau Unicode version

Theorem caucvgsrlemcau 7853
Description: Lemma for caucvgsr 7862. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
caucvgsrlemf.xfr  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
Assertion
Ref Expression
caucvgsrlemcau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
Distinct variable groups:    m, F, x   
y, F, x    k, m, n, x    ph, k, n, x    y, k, n   
n, l, u
Allowed substitution hints:    ph( y, u, m, l)    F( u, k, n, l)    G( x, y, u, k, m, n, l)

Proof of Theorem caucvgsrlemcau
StepHypRef Expression
1 caucvgsr.cau . 2  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
2 caucvgsr.f . . . . . . . . . . 11  |-  ( ph  ->  F : N. --> R. )
3 caucvgsrlemgt1.gt1 . . . . . . . . . . 11  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
4 caucvgsrlemf.xfr . . . . . . . . . . 11  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
52, 1, 3, 4caucvgsrlemf 7852 . . . . . . . . . 10  |-  ( ph  ->  G : N. --> P. )
65ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  G : N. --> P. )
7 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  n  e.  N. )
86, 7ffvelcdmd 5694 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( G `  n )  e.  P. )
95adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  N. )  ->  G : N.
--> P. )
109ffvelcdmda 5693 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( G `  k )  e.  P. )
11 recnnpr 7608 . . . . . . . . . 10  |-  ( n  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
127, 11syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
13 addclpr 7597 . . . . . . . . 9  |-  ( ( ( G `  k
)  e.  P.  /\  <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )  ->  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )
1410, 12, 13syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )
15 prsrlt 7847 . . . . . . . 8  |-  ( ( ( G `  n
)  e.  P.  /\  ( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  [
<. ( ( G `  n )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  ) )
168, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  [
<. ( ( G `  n )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  ) )
172, 1, 3, 4caucvgsrlemfv 7851 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  N. )  ->  [ <. ( ( G `  n
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  n ) )
1817adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( G `  n
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  n ) )
19 prsradd 7846 . . . . . . . . . 10  |-  ( ( ( G `  k
)  e.  P.  /\  <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )  ->  [ <. (
( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( G `
 k )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
2010, 12, 19syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( G `
 k )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
212, 1, 3, 4caucvgsrlemfv 7851 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  N. )  ->  [ <. ( ( G `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
2221adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( G `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
2322oveq1d 5933 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( [ <. ( ( G `
 k )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
2420, 23eqtrd 2226 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( ( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
2518, 24breq12d 4042 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( [ <. ( ( G `
 n )  +P. 
1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  <->  ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
2616, 25bitrd 188 . . . . . 6  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  ( F `  n ) 
<R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
) )
27 addclpr 7597 . . . . . . . . 9  |-  ( ( ( G `  n
)  e.  P.  /\  <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )  ->  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )
288, 12, 27syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )
29 prsrlt 7847 . . . . . . . 8  |-  ( ( ( G `  k
)  e.  P.  /\  ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )  ->  (
( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  [
<. ( ( G `  k )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  ) )
3010, 28, 29syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  [
<. ( ( G `  k )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  ) )
31 prsradd 7846 . . . . . . . . . 10  |-  ( ( ( G `  n
)  e.  P.  /\  <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )  ->  [ <. (
( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( G `
 n )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
328, 12, 31syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( G `
 n )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
3318oveq1d 5933 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( [ <. ( ( G `
 n )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
3432, 33eqtrd 2226 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( ( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
3522, 34breq12d 4042 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( [ <. ( ( G `
 k )  +P. 
1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  <->  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
3630, 35bitrd 188 . . . . . 6  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  ( F `  k ) 
<R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
) )
3726, 36anbi12d 473 . . . . 5  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( G `  n )  <P  (
( G `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k )  <P  ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
)  <->  ( ( F `
 n )  <R 
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3837imbi2d 230 . . . 4  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( n  <N  k  ->  ( ( G `  n )  <P  (
( G `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k )  <P  ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  ( n  <N  k  ->  ( ( F `  n )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
3938ralbidva 2490 . . 3  |-  ( (
ph  /\  n  e.  N. )  ->  ( A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  A. k  e.  N.  ( n  <N  k  ->  ( ( F `
 n )  <R 
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
4039ralbidva 2490 . 2  |-  ( ph  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( G `  n )  <P  (
( G `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k )  <P  ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <R 
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
411, 40mpbird 167 1  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   <.cop 3621   class class class wbr 4029    |-> cmpt 4090   -->wf 5250   ` cfv 5254   iota_crio 5872  (class class class)co 5918   1oc1o 6462   [cec 6585   N.cnpi 7332    <N clti 7335    ~Q ceq 7339   *Qcrq 7344    <Q cltq 7345   P.cnp 7351   1Pc1p 7352    +P. cpp 7353    <P cltp 7355    ~R cer 7356   R.cnr 7357   1Rc1r 7359    +R cplr 7361    <R cltr 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-iltp 7530  df-enr 7786  df-nr 7787  df-plr 7788  df-ltr 7790  df-0r 7791  df-1r 7792
This theorem is referenced by:  caucvgsrlemgt1  7855
  Copyright terms: Public domain W3C validator