ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemcau Unicode version

Theorem caucvgsrlemcau 7317
Description: Lemma for caucvgsr 7326. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
caucvgsrlemf.xfr  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
Assertion
Ref Expression
caucvgsrlemcau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
Distinct variable groups:    m, F, x   
y, F, x    k, m, n, x    ph, k, n, x    y, k, n   
n, l, u
Allowed substitution hints:    ph( y, u, m, l)    F( u, k, n, l)    G( x, y, u, k, m, n, l)

Proof of Theorem caucvgsrlemcau
StepHypRef Expression
1 caucvgsr.cau . 2  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
2 caucvgsr.f . . . . . . . . . . 11  |-  ( ph  ->  F : N. --> R. )
3 caucvgsrlemgt1.gt1 . . . . . . . . . . 11  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
4 caucvgsrlemf.xfr . . . . . . . . . . 11  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
52, 1, 3, 4caucvgsrlemf 7316 . . . . . . . . . 10  |-  ( ph  ->  G : N. --> P. )
65ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  G : N. --> P. )
7 simplr 497 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  n  e.  N. )
86, 7ffvelrnd 5419 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( G `  n )  e.  P. )
95adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  N. )  ->  G : N.
--> P. )
109ffvelrnda 5418 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( G `  k )  e.  P. )
11 recnnpr 7086 . . . . . . . . . 10  |-  ( n  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
127, 11syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
13 addclpr 7075 . . . . . . . . 9  |-  ( ( ( G `  k
)  e.  P.  /\  <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )  ->  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )
1410, 12, 13syl2anc 403 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )
15 prsrlt 7311 . . . . . . . 8  |-  ( ( ( G `  n
)  e.  P.  /\  ( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  [
<. ( ( G `  n )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  ) )
168, 14, 15syl2anc 403 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  [
<. ( ( G `  n )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  ) )
172, 1, 3, 4caucvgsrlemfv 7315 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  N. )  ->  [ <. ( ( G `  n
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  n ) )
1817adantr 270 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( G `  n
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  n ) )
19 prsradd 7310 . . . . . . . . . 10  |-  ( ( ( G `  k
)  e.  P.  /\  <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )  ->  [ <. (
( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( G `
 k )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
2010, 12, 19syl2anc 403 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( G `
 k )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
212, 1, 3, 4caucvgsrlemfv 7315 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  N. )  ->  [ <. ( ( G `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
2221adantlr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( G `  k
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  k ) )
2322oveq1d 5649 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( [ <. ( ( G `
 k )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
2420, 23eqtrd 2120 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( ( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
2518, 24breq12d 3850 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( [ <. ( ( G `
 n )  +P. 
1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  <->  ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
2616, 25bitrd 186 . . . . . 6  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  ( F `  n ) 
<R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
) )
27 addclpr 7075 . . . . . . . . 9  |-  ( ( ( G `  n
)  e.  P.  /\  <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )  ->  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )
288, 12, 27syl2anc 403 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )
29 prsrlt 7311 . . . . . . . 8  |-  ( ( ( G `  k
)  e.  P.  /\  ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  e.  P. )  ->  (
( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  [
<. ( ( G `  k )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  ) )
3010, 28, 29syl2anc 403 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  [
<. ( ( G `  k )  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  ) )
31 prsradd 7310 . . . . . . . . . 10  |-  ( ( ( G `  n
)  e.  P.  /\  <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )  ->  [ <. (
( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( G `
 n )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
328, 12, 31syl2anc 403 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( ( G `
 n )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
3318oveq1d 5649 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( [ <. ( ( G `
 n )  +P. 
1P ) ,  1P >. ]  ~R  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
3432, 33eqtrd 2120 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  =  ( ( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
3522, 34breq12d 3850 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( [ <. ( ( G `
 k )  +P. 
1P ) ,  1P >. ]  ~R  <R  [ <. ( ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  1P ) ,  1P >. ]  ~R  <->  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
3630, 35bitrd 186 . . . . . 6  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  <->  ( F `  k ) 
<R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
) )
3726, 36anbi12d 457 . . . . 5  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( G `  n )  <P  (
( G `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k )  <P  ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
)  <->  ( ( F `
 n )  <R 
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
3837imbi2d 228 . . . 4  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( n  <N  k  ->  ( ( G `  n )  <P  (
( G `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k )  <P  ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  ( n  <N  k  ->  ( ( F `  n )  <R  ( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
3938ralbidva 2376 . . 3  |-  ( (
ph  /\  n  e.  N. )  ->  ( A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  A. k  e.  N.  ( n  <N  k  ->  ( ( F `
 n )  <R 
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
4039ralbidva 2376 . 2  |-  ( ph  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( G `  n )  <P  (
( G `  k
)  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k )  <P  ( ( G `  n )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) )  <->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <R 
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
411, 40mpbird 165 1  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <P  ( ( G `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( G `  k
)  <P  ( ( G `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   <.cop 3444   class class class wbr 3837    |-> cmpt 3891   -->wf 4998   ` cfv 5002   iota_crio 5589  (class class class)co 5634   1oc1o 6156   [cec 6270   N.cnpi 6810    <N clti 6813    ~Q ceq 6817   *Qcrq 6822    <Q cltq 6823   P.cnp 6829   1Pc1p 6830    +P. cpp 6831    <P cltp 6833    ~R cer 6834   R.cnr 6835   1Rc1r 6837    +R cplr 6839    <R cltr 6841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-eprel 4107  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-1o 6163  df-2o 6164  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-pli 6843  df-mi 6844  df-lti 6845  df-plpq 6882  df-mpq 6883  df-enq 6885  df-nqqs 6886  df-plqqs 6887  df-mqqs 6888  df-1nqqs 6889  df-rq 6890  df-ltnqqs 6891  df-enq0 6962  df-nq0 6963  df-0nq0 6964  df-plq0 6965  df-mq0 6966  df-inp 7004  df-i1p 7005  df-iplp 7006  df-iltp 7008  df-enr 7251  df-nr 7252  df-plr 7253  df-ltr 7255  df-0r 7256  df-1r 7257
This theorem is referenced by:  caucvgsrlemgt1  7319
  Copyright terms: Public domain W3C validator