ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnnpr GIF version

Theorem recnnpr 7618
Description: The reciprocal of a positive integer, as a positive real. (Contributed by Jim Kingdon, 27-Feb-2021.)
Assertion
Ref Expression
recnnpr (𝐴N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
Distinct variable group:   𝐴,𝑙,𝑢

Proof of Theorem recnnpr
StepHypRef Expression
1 nnnq 7492 . 2 (𝐴N → [⟨𝐴, 1o⟩] ~QQ)
2 recclnq 7462 . 2 ([⟨𝐴, 1o⟩] ~QQ → (*Q‘[⟨𝐴, 1o⟩] ~Q ) ∈ Q)
3 nqprlu 7617 . 2 ((*Q‘[⟨𝐴, 1o⟩] ~Q ) ∈ Q → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
41, 2, 33syl 17 1 (𝐴N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  {cab 2182  cop 3626   class class class wbr 4034  cfv 5259  1oc1o 6469  [cec 6592  Ncnpi 7342   ~Q ceq 7349  Qcnq 7350  *Qcrq 7354   <Q cltq 7355  Pcnp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-irdg 6430  df-1o 6476  df-oadd 6480  df-omul 6481  df-er 6594  df-ec 6596  df-qs 6600  df-ni 7374  df-pli 7375  df-mi 7376  df-lti 7377  df-plpq 7414  df-mpq 7415  df-enq 7417  df-nqqs 7418  df-plqqs 7419  df-mqqs 7420  df-1nqqs 7421  df-rq 7422  df-ltnqqs 7423  df-inp 7536
This theorem is referenced by:  caucvgprprlemnkltj  7759  caucvgprprlemnbj  7763  caucvgprprlemopu  7769  caucvgprprlemexbt  7776  caucvgprprlemexb  7777  caucvgprprlemaddq  7778  caucvgsrlemcau  7863  caucvgsrlemoffcau  7868  recnnre  7921  recidpirq  7928  axcaucvglemcau  7968
  Copyright terms: Public domain W3C validator