ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pws0g Unicode version

Theorem pws0g 13327
Description: The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsmnd.y  |-  Y  =  ( R  ^s  I )
pws0g.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
pws0g  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( I  X.  {  .0.  } )  =  ( 0g `  Y ) )

Proof of Theorem pws0g
Dummy variables  x  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 simpr 110 . . 3  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  I  e.  V )
3 scaslid 13029 . . . . 5  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
43slotex 12903 . . . 4  |-  ( R  e.  Mnd  ->  (Scalar `  R )  e.  _V )
54adantr 276 . . 3  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  (Scalar `  R )  e.  _V )
6 fconst6g 5481 . . . 4  |-  ( R  e.  Mnd  ->  (
I  X.  { R } ) : I --> Mnd )
76adantr 276 . . 3  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( I  X.  { R } ) : I --> Mnd )
81, 2, 5, 7prds0g 13325 . 2  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( 0g  o.  (
I  X.  { R } ) )  =  ( 0g `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
9 fconstmpt 4726 . . 3  |-  ( I  X.  {  .0.  }
)  =  ( x  e.  I  |->  .0.  )
10 elex 2784 . . . . 5  |-  ( R  e.  Mnd  ->  R  e.  _V )
1110ad2antrr 488 . . . 4  |-  ( ( ( R  e.  Mnd  /\  I  e.  V )  /\  x  e.  I
)  ->  R  e.  _V )
12 fconstmpt 4726 . . . . 5  |-  ( I  X.  { R }
)  =  ( x  e.  I  |->  R )
1312a1i 9 . . . 4  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( I  X.  { R } )  =  ( x  e.  I  |->  R ) )
14 fn0g 13251 . . . . 5  |-  0g  Fn  _V
15 dffn5im 5631 . . . . 5  |-  ( 0g  Fn  _V  ->  0g  =  ( r  e. 
_V  |->  ( 0g `  r ) ) )
1614, 15mp1i 10 . . . 4  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  0g  =  ( r  e.  _V  |->  ( 0g
`  r ) ) )
17 fveq2 5583 . . . . 5  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
18 pws0g.z . . . . 5  |-  .0.  =  ( 0g `  R )
1917, 18eqtr4di 2257 . . . 4  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
2011, 13, 16, 19fmptco 5753 . . 3  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( 0g  o.  (
I  X.  { R } ) )  =  ( x  e.  I  |->  .0.  ) )
219, 20eqtr4id 2258 . 2  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( I  X.  {  .0.  } )  =  ( 0g  o.  ( I  X.  { R }
) ) )
22 pwsmnd.y . . . 4  |-  Y  =  ( R  ^s  I )
23 eqid 2206 . . . 4  |-  (Scalar `  R )  =  (Scalar `  R )
2422, 23pwsval 13167 . . 3  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
2524fveq2d 5587 . 2  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( 0g `  Y
)  =  ( 0g
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
268, 21, 253eqtr4d 2249 1  |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( I  X.  {  .0.  } )  =  ( 0g `  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773   {csn 3634    |-> cmpt 4109    X. cxp 4677    o. ccom 4683    Fn wfn 5271   -->wf 5272   ` cfv 5276  (class class class)co 5951  Scalarcsca 12956   0gc0g 13132   X_scprds 13141    ^s cpws 13142   Mndcmnd 13292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-fz 10138  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-tset 12972  df-ple 12973  df-ds 12975  df-hom 12977  df-cco 12978  df-rest 13117  df-topn 13118  df-0g 13134  df-topgen 13136  df-pt 13137  df-prds 13143  df-pws 13166  df-mgm 13232  df-sgrp 13278  df-mnd 13293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator