ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdc GIF version

Theorem sumrbdc 11760
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isumrb.4 (𝜑𝑀 ∈ ℤ)
isumrb.5 (𝜑𝑁 ∈ ℤ)
isumrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
isumrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
isumrb.mdc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isumrb.ndc ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
Assertion
Ref Expression
sumrbdc (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐹(𝑘)

Proof of Theorem sumrbdc
StepHypRef Expression
1 isumrb.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
21adantr 276 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 10611 . . . 4 seq𝑀( + , 𝐹) ∈ V
4 climres 11684 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 413 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
6 isumrb.7 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑁))
7 isummo.1 . . . . . 6 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
8 isummo.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 477 . . . . . 6 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 isumrb.mdc . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
1110adantlr 477 . . . . . 6 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
12 simpr 110 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
137, 9, 11, 12sumrbdclem 11758 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
146, 13mpidan 423 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
1514breq1d 4060 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
165, 15bitr3d 190 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
17 isumrb.6 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑀))
188adantlr 477 . . . . . 6 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
19 isumrb.ndc . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
2019adantlr 477 . . . . . 6 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
21 simpr 110 . . . . . 6 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
227, 18, 20, 21sumrbdclem 11758 . . . . 5 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝐴 ⊆ (ℤ𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
2317, 22mpidan 423 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
2423breq1d 4060 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
25 isumrb.4 . . . . 5 (𝜑𝑀 ∈ ℤ)
2625adantr 276 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
27 seqex 10611 . . . 4 seq𝑁( + , 𝐹) ∈ V
28 climres 11684 . . . 4 ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
2926, 27, 28sylancl 413 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
3024, 29bitr3d 190 . 2 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
31 uztric 9685 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
3225, 1, 31syl2anc 411 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
3316, 30, 32mpjaodan 800 1 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  ifcif 3575   class class class wbr 4050  cmpt 4112  cres 4684  cfv 5279  cc 7938  0cc0 7940   + caddc 7943  cz 9387  cuz 9663  seqcseq 10609  cli 11659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-clim 11660
This theorem is referenced by:  summodc  11764  zsumdc  11765
  Copyright terms: Public domain W3C validator