![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sumrbdc | GIF version |
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.) |
Ref | Expression |
---|---|
isummo.1 | ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
isummo.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
isumrb.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumrb.5 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
isumrb.6 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
isumrb.7 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) |
isumrb.mdc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
isumrb.ndc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) |
Ref | Expression |
---|---|
sumrbdc | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrb.5 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
3 | seqex 10520 | . . . 4 ⊢ seq𝑀( + , 𝐹) ∈ V | |
4 | climres 11446 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) | |
5 | 2, 3, 4 | sylancl 413 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) |
6 | isumrb.7 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) | |
7 | isummo.1 | . . . . . 6 ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
8 | isummo.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
9 | 8 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
10 | isumrb.mdc | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) | |
11 | 10 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
12 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
13 | 7, 9, 11, 12 | sumrbdclem 11520 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
14 | 6, 13 | mpidan 423 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
15 | 14 | breq1d 4039 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
16 | 5, 15 | bitr3d 190 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
17 | isumrb.6 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
18 | 8 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
19 | isumrb.ndc | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) | |
20 | 19 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) |
21 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | |
22 | 7, 18, 20, 21 | sumrbdclem 11520 | . . . . 5 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝐴 ⊆ (ℤ≥‘𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) = seq𝑀( + , 𝐹)) |
23 | 17, 22 | mpidan 423 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) = seq𝑀( + , 𝐹)) |
24 | 23 | breq1d 4039 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) |
25 | isumrb.4 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
26 | 25 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
27 | seqex 10520 | . . . 4 ⊢ seq𝑁( + , 𝐹) ∈ V | |
28 | climres 11446 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) | |
29 | 26, 27, 28 | sylancl 413 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
30 | 24, 29 | bitr3d 190 | . 2 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
31 | uztric 9614 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | |
32 | 25, 1, 31 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
33 | 16, 30, 32 | mpjaodan 799 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 ifcif 3557 class class class wbr 4029 ↦ cmpt 4090 ↾ cres 4661 ‘cfv 5254 ℂcc 7870 0cc0 7872 + caddc 7875 ℤcz 9317 ℤ≥cuz 9592 seqcseq 10518 ⇝ cli 11421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-clim 11422 |
This theorem is referenced by: summodc 11526 zsumdc 11527 |
Copyright terms: Public domain | W3C validator |