ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdc GIF version

Theorem sumrbdc 11544
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isumrb.4 (𝜑𝑀 ∈ ℤ)
isumrb.5 (𝜑𝑁 ∈ ℤ)
isumrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
isumrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
isumrb.mdc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isumrb.ndc ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
Assertion
Ref Expression
sumrbdc (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐹(𝑘)

Proof of Theorem sumrbdc
StepHypRef Expression
1 isumrb.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
21adantr 276 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 10541 . . . 4 seq𝑀( + , 𝐹) ∈ V
4 climres 11468 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 413 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
6 isumrb.7 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑁))
7 isummo.1 . . . . . 6 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
8 isummo.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 477 . . . . . 6 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 isumrb.mdc . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
1110adantlr 477 . . . . . 6 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
12 simpr 110 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
137, 9, 11, 12sumrbdclem 11542 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
146, 13mpidan 423 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
1514breq1d 4043 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
165, 15bitr3d 190 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
17 isumrb.6 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑀))
188adantlr 477 . . . . . 6 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
19 isumrb.ndc . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
2019adantlr 477 . . . . . 6 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)
21 simpr 110 . . . . . 6 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
227, 18, 20, 21sumrbdclem 11542 . . . . 5 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝐴 ⊆ (ℤ𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
2317, 22mpidan 423 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
2423breq1d 4043 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
25 isumrb.4 . . . . 5 (𝜑𝑀 ∈ ℤ)
2625adantr 276 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
27 seqex 10541 . . . 4 seq𝑁( + , 𝐹) ∈ V
28 climres 11468 . . . 4 ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
2926, 27, 28sylancl 413 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
3024, 29bitr3d 190 . 2 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
31 uztric 9623 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
3225, 1, 31syl2anc 411 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
3316, 30, 32mpjaodan 799 1 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  ifcif 3561   class class class wbr 4033  cmpt 4094  cres 4665  cfv 5258  cc 7877  0cc0 7879   + caddc 7882  cz 9326  cuz 9601  seqcseq 10539  cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-clim 11444
This theorem is referenced by:  summodc  11548  zsumdc  11549
  Copyright terms: Public domain W3C validator