![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sumrbdc | GIF version |
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.) |
Ref | Expression |
---|---|
isummo.1 | ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
isummo.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
isumrb.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumrb.5 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
isumrb.6 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
isumrb.7 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) |
isumrb.mdc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
isumrb.ndc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) |
Ref | Expression |
---|---|
sumrbdc | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrb.5 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
3 | seqex 10449 | . . . 4 ⊢ seq𝑀( + , 𝐹) ∈ V | |
4 | climres 11313 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) | |
5 | 2, 3, 4 | sylancl 413 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) |
6 | isumrb.7 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) | |
7 | isummo.1 | . . . . . 6 ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
8 | isummo.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
9 | 8 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
10 | isumrb.mdc | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) | |
11 | 10 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
12 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
13 | 7, 9, 11, 12 | sumrbdclem 11387 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
14 | 6, 13 | mpidan 423 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
15 | 14 | breq1d 4015 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
16 | 5, 15 | bitr3d 190 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
17 | isumrb.6 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
18 | 8 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
19 | isumrb.ndc | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) | |
20 | 19 | adantlr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) |
21 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | |
22 | 7, 18, 20, 21 | sumrbdclem 11387 | . . . . 5 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝐴 ⊆ (ℤ≥‘𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) = seq𝑀( + , 𝐹)) |
23 | 17, 22 | mpidan 423 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) = seq𝑀( + , 𝐹)) |
24 | 23 | breq1d 4015 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) |
25 | isumrb.4 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
26 | 25 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
27 | seqex 10449 | . . . 4 ⊢ seq𝑁( + , 𝐹) ∈ V | |
28 | climres 11313 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) | |
29 | 26, 27, 28 | sylancl 413 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
30 | 24, 29 | bitr3d 190 | . 2 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
31 | uztric 9551 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | |
32 | 25, 1, 31 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
33 | 16, 30, 32 | mpjaodan 798 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 ifcif 3536 class class class wbr 4005 ↦ cmpt 4066 ↾ cres 4630 ‘cfv 5218 ℂcc 7811 0cc0 7813 + caddc 7816 ℤcz 9255 ℤ≥cuz 9530 seqcseq 10447 ⇝ cli 11288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-clim 11289 |
This theorem is referenced by: summodc 11393 zsumdc 11394 |
Copyright terms: Public domain | W3C validator |