Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumrbdc | GIF version |
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.) |
Ref | Expression |
---|---|
isummo.1 | ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
isummo.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
isumrb.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumrb.5 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
isumrb.6 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
isumrb.7 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) |
isumrb.mdc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
isumrb.ndc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) |
Ref | Expression |
---|---|
sumrbdc | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrb.5 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
2 | 1 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
3 | seqex 10403 | . . . 4 ⊢ seq𝑀( + , 𝐹) ∈ V | |
4 | climres 11266 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) | |
5 | 2, 3, 4 | sylancl 411 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) |
6 | isumrb.7 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) | |
7 | isummo.1 | . . . . . 6 ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
8 | isummo.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
9 | 8 | adantlr 474 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
10 | isumrb.mdc | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) | |
11 | 10 | adantlr 474 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
12 | simpr 109 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
13 | 7, 9, 11, 12 | sumrbdclem 11340 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
14 | 6, 13 | mpidan 421 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
15 | 14 | breq1d 3999 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
16 | 5, 15 | bitr3d 189 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
17 | isumrb.6 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
18 | 8 | adantlr 474 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
19 | isumrb.ndc | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) | |
20 | 19 | adantlr 474 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID 𝑘 ∈ 𝐴) |
21 | simpr 109 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | |
22 | 7, 18, 20, 21 | sumrbdclem 11340 | . . . . 5 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝐴 ⊆ (ℤ≥‘𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) = seq𝑀( + , 𝐹)) |
23 | 17, 22 | mpidan 421 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) = seq𝑀( + , 𝐹)) |
24 | 23 | breq1d 3999 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) |
25 | isumrb.4 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
26 | 25 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
27 | seqex 10403 | . . . 4 ⊢ seq𝑁( + , 𝐹) ∈ V | |
28 | climres 11266 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) | |
29 | 26, 27, 28 | sylancl 411 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
30 | 24, 29 | bitr3d 189 | . 2 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
31 | uztric 9508 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | |
32 | 25, 1, 31 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
33 | 16, 30, 32 | mpjaodan 793 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 DECID wdc 829 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 ifcif 3526 class class class wbr 3989 ↦ cmpt 4050 ↾ cres 4613 ‘cfv 5198 ℂcc 7772 0cc0 7774 + caddc 7777 ℤcz 9212 ℤ≥cuz 9487 seqcseq 10401 ⇝ cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-clim 11242 |
This theorem is referenced by: summodc 11346 zsumdc 11347 |
Copyright terms: Public domain | W3C validator |