![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6ibr | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. Useful for substituting an embedded consequent with a definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6ibr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6ibr.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6ibr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ibr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6ibr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpri 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr4g 204 imp4a 344 dcbi 903 oplem1 942 3impexpbicom 1397 hband 1448 hb3and 1449 nfand 1530 nfimd 1547 equsexd 1690 euim 2043 mopick2 2058 2moswapdc 2065 necon3bd 2325 necon3d 2326 necon2ad 2339 necon1abiddc 2344 ralrimd 2484 rspcimedv 2762 2reuswapdc 2857 ra5 2965 difin 3279 r19.2m 3415 r19.2mOLD 3416 tpid3g 3604 sssnm 3647 ssiun 3821 ssiun2 3822 disjnim 3886 exmidsssnc 4086 sotricim 4205 sotritrieq 4207 tron 4264 ordsucss 4380 ordunisuc2r 4390 ordpwsucss 4442 dmcosseq 4768 relssres 4815 trin2 4888 ssrnres 4939 fnun 5187 f1oun 5343 ssimaex 5436 chfnrn 5485 dffo4 5522 dffo5 5523 isoselem 5675 fnoprabg 5826 poxp 6083 issmo2 6140 smores 6143 tfr0dm 6173 tfrlemibxssdm 6178 tfr1onlembxssdm 6194 tfrcllembxssdm 6207 swoer 6411 qsss 6442 findcard 6735 findcard2 6736 findcard2s 6737 supmoti 6832 ctmlemr 6945 ctm 6946 pm54.43 6996 indpi 7098 recexprlemm 7380 recexprlemloc 7387 recexprlem1ssl 7389 recexprlem1ssu 7390 recexprlemss1l 7391 recexprlemss1u 7392 zmulcl 9011 indstr 9290 eluzdc 9306 icoshft 9666 fzouzsplit 9849 hashunlem 10443 modfsummod 11119 dvds2lem 11353 oddnn02np1 11425 dfgcd2 11548 sqrt2irr 11686 ennnfonelemhom 11773 distop 12097 epttop 12102 restdis 12196 cnrest2 12247 cnptopresti 12249 uptx 12285 txcn 12286 decidr 12695 bj-omssind 12825 bj-om 12827 bj-inf2vnlem3 12862 bj-inf2vnlem4 12863 |
Copyright terms: Public domain | W3C validator |