ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2ser Unicode version

Theorem clim2ser 11681
Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1  |-  Z  =  ( ZZ>= `  M )
clim2ser.2  |-  ( ph  ->  N  e.  Z )
clim2ser.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2ser.5  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
Assertion
Ref Expression
clim2ser  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F )  ~~>  ( A  -  (  seq M
(  +  ,  F
) `  N )
) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem clim2ser
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . 2  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2ser.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 clim2ser.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
42, 3eleqtrdi 2298 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 peano2uz 9706 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
64, 5syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
7 eluzelz 9659 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ZZ )
86, 7syl 14 . 2  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
9 clim2ser.5 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
10 eluzel2 9655 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
114, 10syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
12 clim2ser.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
133, 11, 12serf 10630 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
1413, 2ffvelcdmd 5718 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  CC )
15 seqex 10596 . . 3  |-  seq ( N  +  1 ) (  +  ,  F
)  e.  _V
1615a1i 9 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F )  e. 
_V )
1713adantr 276 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  seq M (  +  ,  F ) : Z --> CC )
186, 3eleqtrrdi 2299 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  Z )
193uztrn2 9668 . . . 4  |-  ( ( ( N  +  1 )  e.  Z  /\  j  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
j  e.  Z )
2018, 19sylan 283 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  Z )
2117, 20ffvelcdmd 5718 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
22 addcl 8052 . . . . . 6  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  +  x
)  e.  CC )
2322adantl 277 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  +  x
)  e.  CC )
24 addass 8057 . . . . . 6  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  +  x
)  +  y )  =  ( k  +  ( x  +  y ) ) )
2524adantl 277 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  +  x )  +  y )  =  ( k  +  ( x  +  y ) ) )
26 simpr 110 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( N  +  1 ) ) )
274adantr 276 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M )
)
283eleq2i 2272 . . . . . . 7  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
2928, 12sylan2br 288 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3029adantlr 477 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3123, 25, 26, 27, 30seq3split 10635 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( (  seq M (  +  ,  F ) `  N )  +  (  seq ( N  + 
1 ) (  +  ,  F ) `  j ) ) )
3231oveq1d 5961 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  j
)  -  (  seq M (  +  ,  F ) `  N
) )  =  ( ( (  seq M
(  +  ,  F
) `  N )  +  (  seq ( N  +  1 ) (  +  ,  F
) `  j )
)  -  (  seq M (  +  ,  F ) `  N
) ) )
3314adantr 276 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  N
)  e.  CC )
343uztrn2 9668 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
3518, 34sylan 283 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
3635, 12syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
371, 8, 36serf 10630 . . . . 5  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
3837ffvelcdmda 5717 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  +  ,  F ) `  j
)  e.  CC )
3933, 38pncan2d 8387 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  +  ,  F ) `  N )  +  (  seq ( N  + 
1 ) (  +  ,  F ) `  j ) )  -  (  seq M (  +  ,  F ) `  N ) )  =  (  seq ( N  +  1 ) (  +  ,  F ) `
 j ) )
4032, 39eqtr2d 2239 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  +  ,  F ) `  j
)  =  ( (  seq M (  +  ,  F ) `  j )  -  (  seq M (  +  ,  F ) `  N
) ) )
411, 8, 9, 14, 16, 21, 40climsubc1 11676 1  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F )  ~~>  ( A  -  (  seq M
(  +  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772   class class class wbr 4045   -->wf 5268   ` cfv 5272  (class class class)co 5946   CCcc 7925   1c1 7928    + caddc 7930    - cmin 8245   ZZcz 9374   ZZ>=cuz 9650    seqcseq 10594    ~~> cli 11622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-fz 10133  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623
This theorem is referenced by:  iserex  11683  ege2le3  12015
  Copyright terms: Public domain W3C validator