ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2ser Unicode version

Theorem clim2ser 11138
Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1  |-  Z  =  ( ZZ>= `  M )
clim2ser.2  |-  ( ph  ->  N  e.  Z )
clim2ser.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2ser.5  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
Assertion
Ref Expression
clim2ser  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F )  ~~>  ( A  -  (  seq M
(  +  ,  F
) `  N )
) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem clim2ser
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . 2  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2ser.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 clim2ser.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
42, 3eleqtrdi 2233 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 peano2uz 9405 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
64, 5syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
7 eluzelz 9359 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ZZ )
86, 7syl 14 . 2  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
9 clim2ser.5 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
10 eluzel2 9355 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
114, 10syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
12 clim2ser.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
133, 11, 12serf 10278 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
1413, 2ffvelrnd 5564 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  CC )
15 seqex 10251 . . 3  |-  seq ( N  +  1 ) (  +  ,  F
)  e.  _V
1615a1i 9 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F )  e. 
_V )
1713adantr 274 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  seq M (  +  ,  F ) : Z --> CC )
186, 3eleqtrrdi 2234 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  Z )
193uztrn2 9367 . . . 4  |-  ( ( ( N  +  1 )  e.  Z  /\  j  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
j  e.  Z )
2018, 19sylan 281 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  Z )
2117, 20ffvelrnd 5564 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  e.  CC )
22 addcl 7769 . . . . . 6  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  +  x
)  e.  CC )
2322adantl 275 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  +  x
)  e.  CC )
24 addass 7774 . . . . . 6  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  +  x
)  +  y )  =  ( k  +  ( x  +  y ) ) )
2524adantl 275 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  +  x )  +  y )  =  ( k  +  ( x  +  y ) ) )
26 simpr 109 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( N  +  1 ) ) )
274adantr 274 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M )
)
283eleq2i 2207 . . . . . . 7  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
2928, 12sylan2br 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3029adantlr 469 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3123, 25, 26, 27, 30seq3split 10283 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( (  seq M (  +  ,  F ) `  N )  +  (  seq ( N  + 
1 ) (  +  ,  F ) `  j ) ) )
3231oveq1d 5797 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (  seq M (  +  ,  F ) `  j
)  -  (  seq M (  +  ,  F ) `  N
) )  =  ( ( (  seq M
(  +  ,  F
) `  N )  +  (  seq ( N  +  1 ) (  +  ,  F
) `  j )
)  -  (  seq M (  +  ,  F ) `  N
) ) )
3314adantr 274 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  N
)  e.  CC )
343uztrn2 9367 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
3518, 34sylan 281 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
3635, 12syldan 280 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
371, 8, 36serf 10278 . . . . 5  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
3837ffvelrnda 5563 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  +  ,  F ) `  j
)  e.  CC )
3933, 38pncan2d 8099 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( (
(  seq M (  +  ,  F ) `  N )  +  (  seq ( N  + 
1 ) (  +  ,  F ) `  j ) )  -  (  seq M (  +  ,  F ) `  N ) )  =  (  seq ( N  +  1 ) (  +  ,  F ) `
 j ) )
4032, 39eqtr2d 2174 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  +  ,  F ) `  j
)  =  ( (  seq M (  +  ,  F ) `  j )  -  (  seq M (  +  ,  F ) `  N
) ) )
411, 8, 9, 14, 16, 21, 40climsubc1 11133 1  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F )  ~~>  ( A  -  (  seq M
(  +  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   _Vcvv 2689   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   CCcc 7642   1c1 7645    + caddc 7647    - cmin 7957   ZZcz 9078   ZZ>=cuz 9350    seqcseq 10249    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-fz 9822  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  iserex  11140  ege2le3  11414
  Copyright terms: Public domain W3C validator