| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ghm | GIF version | ||
| Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| 0ghm.z | ⊢ 0 = (0g‘𝑁) |
| 0ghm.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| 0ghm | ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13339 | . . 3 ⊢ (𝑀 ∈ Grp → 𝑀 ∈ Mnd) | |
| 2 | grpmnd 13339 | . . 3 ⊢ (𝑁 ∈ Grp → 𝑁 ∈ Mnd) | |
| 3 | 0ghm.z | . . . 4 ⊢ 0 = (0g‘𝑁) | |
| 4 | 0ghm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 5 | 3, 4 | 0mhm 13318 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) |
| 6 | 1, 2, 5 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) |
| 7 | ghmmhmb 13590 | . 2 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝑀 GrpHom 𝑁) = (𝑀 MndHom 𝑁)) | |
| 8 | 6, 7 | eleqtrrd 2285 | 1 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 {csn 3633 × cxp 4673 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 0gc0g 13088 Mndcmnd 13248 MndHom cmhm 13289 Grpcgrp 13332 GrpHom cghm 13576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-mhm 13291 df-grp 13335 df-ghm 13577 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |