ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ghm GIF version

Theorem 0ghm 13464
Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0ghm.z 0 = (0g𝑁)
0ghm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
0ghm ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))

Proof of Theorem 0ghm
StepHypRef Expression
1 grpmnd 13209 . . 3 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
2 grpmnd 13209 . . 3 (𝑁 ∈ Grp → 𝑁 ∈ Mnd)
3 0ghm.z . . . 4 0 = (0g𝑁)
4 0ghm.b . . . 4 𝐵 = (Base‘𝑀)
53, 40mhm 13188 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
61, 2, 5syl2an 289 . 2 ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
7 ghmmhmb 13460 . 2 ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝑀 GrpHom 𝑁) = (𝑀 MndHom 𝑁))
86, 7eleqtrrd 2276 1 ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3623   × cxp 4662  cfv 5259  (class class class)co 5925  Basecbs 12703  0gc0g 12958  Mndcmnd 13118   MndHom cmhm 13159  Grpcgrp 13202   GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-ghm 13447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator