ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ghm GIF version

Theorem 0ghm 13594
Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0ghm.z 0 = (0g𝑁)
0ghm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
0ghm ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))

Proof of Theorem 0ghm
StepHypRef Expression
1 grpmnd 13339 . . 3 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
2 grpmnd 13339 . . 3 (𝑁 ∈ Grp → 𝑁 ∈ Mnd)
3 0ghm.z . . . 4 0 = (0g𝑁)
4 0ghm.b . . . 4 𝐵 = (Base‘𝑀)
53, 40mhm 13318 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
61, 2, 5syl2an 289 . 2 ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
7 ghmmhmb 13590 . 2 ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝑀 GrpHom 𝑁) = (𝑀 MndHom 𝑁))
86, 7eleqtrrd 2285 1 ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  {csn 3633   × cxp 4673  cfv 5271  (class class class)co 5944  Basecbs 12832  0gc0g 13088  Mndcmnd 13248   MndHom cmhm 13289  Grpcgrp 13332   GrpHom cghm 13576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mhm 13291  df-grp 13335  df-ghm 13577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator