Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ap0 | GIF version |
Description: The number 2 is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.) |
Ref | Expression |
---|---|
2ap0 | ⊢ 2 # 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8886 | . 2 ⊢ 2 ∈ ℝ | |
2 | 2pos 8907 | . 2 ⊢ 0 < 2 | |
3 | 1, 2 | gt0ap0ii 8486 | 1 ⊢ 2 # 0 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3965 0cc0 7715 # cap 8439 2c2 8867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-ltxr 7900 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-2 8875 |
This theorem is referenced by: 2div2e1 8948 4d2e2 8976 halfre 9029 1mhlfehlf 9034 halfpm6th 9036 2muliap0 9040 halfcl 9042 rehalfcl 9043 half0 9044 2halves 9045 halfaddsub 9050 xp1d2m1eqxm1d2 9068 div4p1lem1div2 9069 zneo 9248 nneoor 9249 nneo 9250 zeo 9252 zeo2 9253 halfthird 9420 qbtwnrelemcalc 10137 2tnp1ge0ge0 10182 zesq 10518 sqoddm1div8 10553 faclbnd2 10598 crre 10739 addcj 10773 resqrexlemover 10892 resqrexlemcalc1 10896 resqrexlemcvg 10901 maxabslemab 11088 max0addsup 11101 minabs 11117 bdtri 11121 arisum 11377 arisum2 11378 geo2sum 11393 geo2lim 11395 geoihalfsum 11401 ege2le3 11550 efgt0 11563 tanval2ap 11592 tanval3ap 11593 efi4p 11596 efival 11611 cosadd 11616 sinmul 11623 cosmul 11624 sin01bnd 11636 cos01bnd 11637 sin02gt0 11642 odd2np1 11745 mulsucdiv2z 11757 ltoddhalfle 11765 halfleoddlt 11766 nn0enne 11774 nn0o 11779 flodddiv4 11806 flodddiv4t2lthalf 11809 6lcm4e12 11944 sqrt2irrlem 12015 sqrt2irr 12016 oddennn 12093 evenennn 12094 coscn 13051 sinhalfpilem 13072 cospi 13081 ptolemy 13105 sincosq3sgn 13109 sincosq4sgn 13110 sinq12gt0 13111 cosq23lt0 13114 coseq00topi 13116 tangtx 13119 sincos4thpi 13121 sincos6thpi 13123 sincos3rdpi 13124 pigt3 13125 abssinper 13127 coskpi 13129 logsqrt 13203 apdifflemr 13580 apdiff 13581 |
Copyright terms: Public domain | W3C validator |