| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsvalstrd | GIF version | ||
| Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| prdsvalstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| prdsvalstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| prdsvalstrd.m | ⊢ (𝜑 → × ∈ 𝑋) |
| prdsvalstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| prdsvalstrd.c | ⊢ (𝜑 → · ∈ 𝑍) |
| prdsvalstrd.i | ⊢ (𝜑 → , ∈ 𝑃) |
| prdsvalstrd.t | ⊢ (𝜑 → 𝑂 ∈ 𝑄) |
| prdsvalstrd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
| prdsvalstrd.d | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| prdsvalstrd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑇) |
| prdsvalstrd.x | ⊢ (𝜑 → ∙ ∈ 𝑈) |
| Ref | Expression |
|---|---|
| prdsvalstrd | ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 3361 | . 2 ⊢ ((({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}) = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) | |
| 2 | eqid 2229 | . . . 4 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) | |
| 3 | prdsvalstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | prdsvalstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | prdsvalstrd.m | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
| 6 | prdsvalstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 7 | prdsvalstrd.c | . . . 4 ⊢ (𝜑 → · ∈ 𝑍) | |
| 8 | prdsvalstrd.i | . . . 4 ⊢ (𝜑 → , ∈ 𝑃) | |
| 9 | prdsvalstrd.t | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑄) | |
| 10 | prdsvalstrd.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
| 11 | prdsvalstrd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | imasvalstrd 13311 | . . 3 ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) Struct 〈1, ;12〉) |
| 13 | prdsvalstrd.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑇) | |
| 14 | prdsvalstrd.x | . . . 4 ⊢ (𝜑 → ∙ ∈ 𝑈) | |
| 15 | 1nn0 9393 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 16 | 4nn 9282 | . . . . . 6 ⊢ 4 ∈ ℕ | |
| 17 | 15, 16 | decnncl 9605 | . . . . 5 ⊢ ;14 ∈ ℕ |
| 18 | homndx 13274 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
| 19 | 4nn0 9396 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 20 | 5nn 9283 | . . . . . 6 ⊢ 5 ∈ ℕ | |
| 21 | 4lt5 9294 | . . . . . 6 ⊢ 4 < 5 | |
| 22 | 15, 19, 20, 21 | declt 9613 | . . . . 5 ⊢ ;14 < ;15 |
| 23 | 15, 20 | decnncl 9605 | . . . . 5 ⊢ ;15 ∈ ℕ |
| 24 | ccondx 13277 | . . . . 5 ⊢ (comp‘ndx) = ;15 | |
| 25 | 17, 18, 22, 23, 24 | strle2g 13148 | . . . 4 ⊢ ((𝐻 ∈ 𝑇 ∧ ∙ ∈ 𝑈) → {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉} Struct 〈;14, ;15〉) |
| 26 | 13, 14, 25 | syl2anc 411 | . . 3 ⊢ (𝜑 → {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉} Struct 〈;14, ;15〉) |
| 27 | 2nn0 9394 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 28 | 2lt4 9292 | . . . . 5 ⊢ 2 < 4 | |
| 29 | 15, 27, 16, 28 | declt 9613 | . . . 4 ⊢ ;12 < ;14 |
| 30 | 29 | a1i 9 | . . 3 ⊢ (𝜑 → ;12 < ;14) |
| 31 | 12, 26, 30 | strleund 13144 | . 2 ⊢ (𝜑 → ((({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}) Struct 〈1, ;15〉) |
| 32 | 1, 31 | eqbrtrrid 4119 | 1 ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∪ cun 3195 {cpr 3667 {ctp 3668 〈cop 3669 class class class wbr 4083 ‘cfv 5318 1c1 8008 < clt 8189 2c2 9169 4c4 9171 5c5 9172 ;cdc 9586 Struct cstr 13036 ndxcnx 13037 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 Scalarcsca 13121 ·𝑠 cvsca 13122 ·𝑖cip 13123 TopSetcts 13124 lecple 13125 distcds 13127 Hom chom 13129 compcco 13130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-fz 10213 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 df-hom 13142 df-cco 13143 |
| This theorem is referenced by: prdsbaslemss 13315 |
| Copyright terms: Public domain | W3C validator |