ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsvalstrd GIF version

Theorem prdsvalstrd 12975
Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsvalstrd.b (𝜑𝐵𝑉)
prdsvalstrd.p (𝜑+𝑊)
prdsvalstrd.m (𝜑×𝑋)
prdsvalstrd.s (𝜑𝑆𝑌)
prdsvalstrd.c (𝜑·𝑍)
prdsvalstrd.i (𝜑,𝑃)
prdsvalstrd.t (𝜑𝑂𝑄)
prdsvalstrd.l (𝜑𝐿𝑅)
prdsvalstrd.d (𝜑𝐷𝐴)
prdsvalstrd.h (𝜑𝐻𝑇)
prdsvalstrd.x (𝜑𝑈)
Assertion
Ref Expression
prdsvalstrd (𝜑 → (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})) Struct ⟨1, 15⟩)

Proof of Theorem prdsvalstrd
StepHypRef Expression
1 unass 3321 . 2 ((({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩}) ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}))
2 eqid 2196 . . . 4 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩})
3 prdsvalstrd.b . . . 4 (𝜑𝐵𝑉)
4 prdsvalstrd.p . . . 4 (𝜑+𝑊)
5 prdsvalstrd.m . . . 4 (𝜑×𝑋)
6 prdsvalstrd.s . . . 4 (𝜑𝑆𝑌)
7 prdsvalstrd.c . . . 4 (𝜑·𝑍)
8 prdsvalstrd.i . . . 4 (𝜑,𝑃)
9 prdsvalstrd.t . . . 4 (𝜑𝑂𝑄)
10 prdsvalstrd.l . . . 4 (𝜑𝐿𝑅)
11 prdsvalstrd.d . . . 4 (𝜑𝐷𝐴)
122, 3, 4, 5, 6, 7, 8, 9, 10, 11imasvalstrd 12974 . . 3 (𝜑 → (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩}) Struct ⟨1, 12⟩)
13 prdsvalstrd.h . . . 4 (𝜑𝐻𝑇)
14 prdsvalstrd.x . . . 4 (𝜑𝑈)
15 1nn0 9284 . . . . . 6 1 ∈ ℕ0
16 4nn 9173 . . . . . 6 4 ∈ ℕ
1715, 16decnncl 9495 . . . . 5 14 ∈ ℕ
18 homndx 12937 . . . . 5 (Hom ‘ndx) = 14
19 4nn0 9287 . . . . . 6 4 ∈ ℕ0
20 5nn 9174 . . . . . 6 5 ∈ ℕ
21 4lt5 9185 . . . . . 6 4 < 5
2215, 19, 20, 21declt 9503 . . . . 5 14 < 15
2315, 20decnncl 9495 . . . . 5 15 ∈ ℕ
24 ccondx 12940 . . . . 5 (comp‘ndx) = 15
2517, 18, 22, 23, 24strle2g 12812 . . . 4 ((𝐻𝑇𝑈) → {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩} Struct ⟨14, 15⟩)
2613, 14, 25syl2anc 411 . . 3 (𝜑 → {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩} Struct ⟨14, 15⟩)
27 2nn0 9285 . . . . 5 2 ∈ ℕ0
28 2lt4 9183 . . . . 5 2 < 4
2915, 27, 16, 28declt 9503 . . . 4 12 < 14
3029a1i 9 . . 3 (𝜑12 < 14)
3112, 26, 30strleund 12808 . 2 (𝜑 → ((({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ {⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩}) ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩}) Struct ⟨1, 15⟩)
321, 31eqbrtrrid 4070 1 (𝜑 → (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∪ ({⟨(TopSet‘ndx), 𝑂⟩, ⟨(le‘ndx), 𝐿⟩, ⟨(dist‘ndx), 𝐷⟩} ∪ {⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), ⟩})) Struct ⟨1, 15⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  cun 3155  {cpr 3624  {ctp 3625  cop 3626   class class class wbr 4034  cfv 5259  1c1 7899   < clt 8080  2c2 9060  4c4 9062  5c5 9063  cdc 9476   Struct cstr 12701  ndxcnx 12702  Basecbs 12705  +gcplusg 12782  .rcmulr 12783  Scalarcsca 12785   ·𝑠 cvsca 12786  ·𝑖cip 12787  TopSetcts 12788  lecple 12789  distcds 12791  Hom chom 12793  compcco 12794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-fz 10103  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-hom 12806  df-cco 12807
This theorem is referenced by:  prdsbaslemss  12978
  Copyright terms: Public domain W3C validator