| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsvalstrd | GIF version | ||
| Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| prdsvalstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| prdsvalstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| prdsvalstrd.m | ⊢ (𝜑 → × ∈ 𝑋) |
| prdsvalstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| prdsvalstrd.c | ⊢ (𝜑 → · ∈ 𝑍) |
| prdsvalstrd.i | ⊢ (𝜑 → , ∈ 𝑃) |
| prdsvalstrd.t | ⊢ (𝜑 → 𝑂 ∈ 𝑄) |
| prdsvalstrd.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
| prdsvalstrd.d | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| prdsvalstrd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑇) |
| prdsvalstrd.x | ⊢ (𝜑 → ∙ ∈ 𝑈) |
| Ref | Expression |
|---|---|
| prdsvalstrd | ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 3341 | . 2 ⊢ ((({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}) = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) | |
| 2 | eqid 2209 | . . . 4 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) | |
| 3 | prdsvalstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | prdsvalstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | prdsvalstrd.m | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
| 6 | prdsvalstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 7 | prdsvalstrd.c | . . . 4 ⊢ (𝜑 → · ∈ 𝑍) | |
| 8 | prdsvalstrd.i | . . . 4 ⊢ (𝜑 → , ∈ 𝑃) | |
| 9 | prdsvalstrd.t | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑄) | |
| 10 | prdsvalstrd.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
| 11 | prdsvalstrd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | imasvalstrd 13269 | . . 3 ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) Struct 〈1, ;12〉) |
| 13 | prdsvalstrd.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑇) | |
| 14 | prdsvalstrd.x | . . . 4 ⊢ (𝜑 → ∙ ∈ 𝑈) | |
| 15 | 1nn0 9353 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 16 | 4nn 9242 | . . . . . 6 ⊢ 4 ∈ ℕ | |
| 17 | 15, 16 | decnncl 9565 | . . . . 5 ⊢ ;14 ∈ ℕ |
| 18 | homndx 13232 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
| 19 | 4nn0 9356 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 20 | 5nn 9243 | . . . . . 6 ⊢ 5 ∈ ℕ | |
| 21 | 4lt5 9254 | . . . . . 6 ⊢ 4 < 5 | |
| 22 | 15, 19, 20, 21 | declt 9573 | . . . . 5 ⊢ ;14 < ;15 |
| 23 | 15, 20 | decnncl 9565 | . . . . 5 ⊢ ;15 ∈ ℕ |
| 24 | ccondx 13235 | . . . . 5 ⊢ (comp‘ndx) = ;15 | |
| 25 | 17, 18, 22, 23, 24 | strle2g 13106 | . . . 4 ⊢ ((𝐻 ∈ 𝑇 ∧ ∙ ∈ 𝑈) → {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉} Struct 〈;14, ;15〉) |
| 26 | 13, 14, 25 | syl2anc 411 | . . 3 ⊢ (𝜑 → {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉} Struct 〈;14, ;15〉) |
| 27 | 2nn0 9354 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 28 | 2lt4 9252 | . . . . 5 ⊢ 2 < 4 | |
| 29 | 15, 27, 16, 28 | declt 9573 | . . . 4 ⊢ ;12 < ;14 |
| 30 | 29 | a1i 9 | . . 3 ⊢ (𝜑 → ;12 < ;14) |
| 31 | 12, 26, 30 | strleund 13102 | . 2 ⊢ (𝜑 → ((({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}) Struct 〈1, ;15〉) |
| 32 | 1, 31 | eqbrtrrid 4098 | 1 ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ∪ cun 3175 {cpr 3647 {ctp 3648 〈cop 3649 class class class wbr 4062 ‘cfv 5294 1c1 7968 < clt 8149 2c2 9129 4c4 9131 5c5 9132 ;cdc 9546 Struct cstr 12994 ndxcnx 12995 Basecbs 12998 +gcplusg 13076 .rcmulr 13077 Scalarcsca 13079 ·𝑠 cvsca 13080 ·𝑖cip 13081 TopSetcts 13082 lecple 13083 distcds 13085 Hom chom 13087 compcco 13088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-hom 13100 df-cco 13101 |
| This theorem is referenced by: prdsbaslemss 13273 |
| Copyright terms: Public domain | W3C validator |