ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanaddaplem GIF version

Theorem tanaddaplem 11194
Description: A useful intermediate step in tanaddap 11195 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.)
Assertion
Ref Expression
tanaddaplem (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1))

Proof of Theorem tanaddaplem
StepHypRef Expression
1 coscl 11163 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
21ad2antrr 473 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘𝐴) ∈ ℂ)
3 coscl 11163 . . . . 5 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
43ad2antlr 474 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘𝐵) ∈ ℂ)
52, 4mulcld 7605 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
6 sincl 11162 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
76ad2antrr 473 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (sin‘𝐴) ∈ ℂ)
8 sincl 11162 . . . . 5 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
98ad2antlr 474 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (sin‘𝐵) ∈ ℂ)
107, 9mulcld 7605 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
11 subap0 8215 . . 3 ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))) # 0 ↔ ((cos‘𝐴) · (cos‘𝐵)) # ((sin‘𝐴) · (sin‘𝐵))))
125, 10, 11syl2anc 404 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))) # 0 ↔ ((cos‘𝐴) · (cos‘𝐵)) # ((sin‘𝐴) · (sin‘𝐵))))
13 cosadd 11193 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
1413adantr 271 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
1514breq1d 3877 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))) # 0))
16 tanvalap 11164 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
1716ad2ant2r 494 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
18 tanvalap 11164 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (cos‘𝐵) # 0) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
1918ad2ant2l 493 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
2017, 19oveq12d 5708 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((tan‘𝐴) · (tan‘𝐵)) = (((sin‘𝐴) / (cos‘𝐴)) · ((sin‘𝐵) / (cos‘𝐵))))
21 simprl 499 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘𝐴) # 0)
22 simprr 500 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘𝐵) # 0)
237, 2, 9, 4, 21, 22divmuldivapd 8396 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (((sin‘𝐴) / (cos‘𝐴)) · ((sin‘𝐵) / (cos‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))))
2420, 23eqtrd 2127 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((tan‘𝐴) · (tan‘𝐵)) = (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))))
2524breq1d 3877 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (((tan‘𝐴) · (tan‘𝐵)) # 1 ↔ (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))) # 1))
26 1cnd 7601 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → 1 ∈ ℂ)
272, 4, 21, 22mulap0d 8224 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘𝐴) · (cos‘𝐵)) # 0)
2810, 5, 26, 27apdivmuld 8377 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))) # 1 ↔ (((cos‘𝐴) · (cos‘𝐵)) · 1) # ((sin‘𝐴) · (sin‘𝐵))))
295mulid1d 7602 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (((cos‘𝐴) · (cos‘𝐵)) · 1) = ((cos‘𝐴) · (cos‘𝐵)))
3029breq1d 3877 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · 1) # ((sin‘𝐴) · (sin‘𝐵)) ↔ ((cos‘𝐴) · (cos‘𝐵)) # ((sin‘𝐴) · (sin‘𝐵))))
3125, 28, 303bitrd 213 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (((tan‘𝐴) · (tan‘𝐵)) # 1 ↔ ((cos‘𝐴) · (cos‘𝐵)) # ((sin‘𝐴) · (sin‘𝐵))))
3212, 15, 313bitr4d 219 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445   class class class wbr 3867  cfv 5049  (class class class)co 5690  cc 7445  0cc0 7447  1c1 7448   + caddc 7450   · cmul 7452  cmin 7750   # cap 8155   / cdiv 8236  sincsin 11099  cosccos 11100  tanctan 11101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-disj 3845  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-frec 6194  df-1o 6219  df-oadd 6223  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540  df-sup 6759  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-ico 9460  df-fz 9574  df-fzo 9703  df-iseq 10002  df-seq3 10003  df-exp 10086  df-fac 10265  df-bc 10287  df-ihash 10315  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563  df-clim 10838  df-sumdc 10913  df-ef 11103  df-sin 11105  df-cos 11106  df-tan 11107
This theorem is referenced by:  tanaddap  11195
  Copyright terms: Public domain W3C validator