ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanaddaplem GIF version

Theorem tanaddaplem 12124
Description: A useful intermediate step in tanaddap 12125 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.)
Assertion
Ref Expression
tanaddaplem (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1))

Proof of Theorem tanaddaplem
StepHypRef Expression
1 coscl 12093 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
21ad2antrr 488 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘𝐴) ∈ ℂ)
3 coscl 12093 . . . . 5 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
43ad2antlr 489 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘𝐵) ∈ ℂ)
52, 4mulcld 8113 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
6 sincl 12092 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
76ad2antrr 488 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (sin‘𝐴) ∈ ℂ)
8 sincl 12092 . . . . 5 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
98ad2antlr 489 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (sin‘𝐵) ∈ ℂ)
107, 9mulcld 8113 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
11 subap0 8736 . . 3 ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))) # 0 ↔ ((cos‘𝐴) · (cos‘𝐵)) # ((sin‘𝐴) · (sin‘𝐵))))
125, 10, 11syl2anc 411 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))) # 0 ↔ ((cos‘𝐴) · (cos‘𝐵)) # ((sin‘𝐴) · (sin‘𝐵))))
13 cosadd 12123 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
1413adantr 276 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
1514breq1d 4061 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))) # 0))
16 tanvalap 12094 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
1716ad2ant2r 509 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
18 tanvalap 12094 . . . . . . 7 ((𝐵 ∈ ℂ ∧ (cos‘𝐵) # 0) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
1918ad2ant2l 508 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
2017, 19oveq12d 5975 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((tan‘𝐴) · (tan‘𝐵)) = (((sin‘𝐴) / (cos‘𝐴)) · ((sin‘𝐵) / (cos‘𝐵))))
21 simprl 529 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘𝐴) # 0)
22 simprr 531 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (cos‘𝐵) # 0)
237, 2, 9, 4, 21, 22divmuldivapd 8925 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (((sin‘𝐴) / (cos‘𝐴)) · ((sin‘𝐵) / (cos‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))))
2420, 23eqtrd 2239 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((tan‘𝐴) · (tan‘𝐵)) = (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))))
2524breq1d 4061 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (((tan‘𝐴) · (tan‘𝐵)) # 1 ↔ (((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))) # 1))
26 1cnd 8108 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → 1 ∈ ℂ)
272, 4, 21, 22mulap0d 8751 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘𝐴) · (cos‘𝐵)) # 0)
2810, 5, 26, 27apdivmuld 8906 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((((sin‘𝐴) · (sin‘𝐵)) / ((cos‘𝐴) · (cos‘𝐵))) # 1 ↔ (((cos‘𝐴) · (cos‘𝐵)) · 1) # ((sin‘𝐴) · (sin‘𝐵))))
295mulridd 8109 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (((cos‘𝐴) · (cos‘𝐵)) · 1) = ((cos‘𝐴) · (cos‘𝐵)))
3029breq1d 4061 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · 1) # ((sin‘𝐴) · (sin‘𝐵)) ↔ ((cos‘𝐴) · (cos‘𝐵)) # ((sin‘𝐴) · (sin‘𝐵))))
3125, 28, 303bitrd 214 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → (((tan‘𝐴) · (tan‘𝐵)) # 1 ↔ ((cos‘𝐴) · (cos‘𝐵)) # ((sin‘𝐴) · (sin‘𝐵))))
3212, 15, 313bitr4d 220 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  0cc0 7945  1c1 7946   + caddc 7948   · cmul 7950  cmin 8263   # cap 8674   / cdiv 8765  sincsin 12030  cosccos 12031  tanctan 12032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-ico 10036  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-fac 10893  df-bc 10915  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740  df-ef 12034  df-sin 12036  df-cos 12037  df-tan 12038
This theorem is referenced by:  tanaddap  12125
  Copyright terms: Public domain W3C validator