| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funvtxval0d | GIF version | ||
| Description: The set of vertices of an extensible structure with a base set and (at least) another slot. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| funvtxval0.s | ⊢ 𝑆 ∈ V |
| funvtxval0d.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| funvtxval0d.fun | ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) |
| funvtxval0d.ne | ⊢ (𝜑 → 𝑆 ≠ (Base‘ndx)) |
| funvtxval0d.dm | ⊢ (𝜑 → {(Base‘ndx), 𝑆} ⊆ dom 𝐺) |
| Ref | Expression |
|---|---|
| funvtxval0d | ⊢ (𝜑 → (Vtx‘𝐺) = (Base‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basendxnn 12963 | . . 3 ⊢ (Base‘ndx) ∈ ℕ | |
| 2 | 1 | elexi 2786 | . 2 ⊢ (Base‘ndx) ∈ V |
| 3 | funvtxval0.s | . 2 ⊢ 𝑆 ∈ V | |
| 4 | funvtxval0d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 5 | funvtxval0d.fun | . 2 ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) | |
| 6 | funvtxval0d.ne | . . 3 ⊢ (𝜑 → 𝑆 ≠ (Base‘ndx)) | |
| 7 | 6 | necomd 2463 | . 2 ⊢ (𝜑 → (Base‘ndx) ≠ 𝑆) |
| 8 | funvtxval0d.dm | . 2 ⊢ (𝜑 → {(Base‘ndx), 𝑆} ⊆ dom 𝐺) | |
| 9 | 2, 3, 4, 5, 7, 8 | funvtxdm2vald 15705 | 1 ⊢ (𝜑 → (Vtx‘𝐺) = (Base‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 Vcvv 2773 ∖ cdif 3167 ⊆ wss 3170 ∅c0 3464 {csn 3638 {cpr 3639 dom cdm 4683 Fun wfun 5274 ‘cfv 5280 ℕcn 9056 ndxcnx 12904 Basecbs 12907 Vtxcvtx 15686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1st 6239 df-1o 6515 df-2o 6516 df-en 6841 df-dom 6842 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 df-vtx 15688 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |