| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > edgfiedgval2dom | GIF version | ||
| Description: The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| basvtxval.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
| basvtxval2dom.d | ⊢ (𝜑 → 2o ≼ dom 𝐺) |
| edgfiedgval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
| edgfiedgval.f | ⊢ (𝜑 → 〈(.ef‘ndx), 𝐸〉 ∈ 𝐺) |
| Ref | Expression |
|---|---|
| edgfiedgval2dom | ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basvtxval.s | . . . 4 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
| 2 | structex 12786 | . . . 4 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 4 | structn0fun 12787 | . . . 4 ⊢ (𝐺 Struct 𝑋 → Fun (𝐺 ∖ {∅})) | |
| 5 | 1, 4 | syl 14 | . . 3 ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) |
| 6 | basvtxval2dom.d | . . 3 ⊢ (𝜑 → 2o ≼ dom 𝐺) | |
| 7 | funiedgdm2domval 15569 | . . 3 ⊢ ((𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | |
| 8 | 3, 5, 6, 7 | syl3anc 1249 | . 2 ⊢ (𝜑 → (iEdg‘𝐺) = (.ef‘𝐺)) |
| 9 | edgfid 15547 | . . . 4 ⊢ .ef = Slot (.ef‘ndx) | |
| 10 | edgfndxnn 15549 | . . . 4 ⊢ (.ef‘ndx) ∈ ℕ | |
| 11 | 9, 10 | ndxslid 12799 | . . 3 ⊢ (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ) |
| 12 | edgfiedgval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
| 13 | edgfiedgval.f | . . 3 ⊢ (𝜑 → 〈(.ef‘ndx), 𝐸〉 ∈ 𝐺) | |
| 14 | 11, 1, 12, 13 | opelstrsl 12888 | . 2 ⊢ (𝜑 → 𝐸 = (.ef‘𝐺)) |
| 15 | 8, 14 | eqtr4d 2240 | 1 ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∖ cdif 3162 ∅c0 3459 {csn 3632 〈cop 3635 class class class wbr 4043 dom cdm 4674 Fun wfun 5264 ‘cfv 5270 2oc2o 6495 ≼ cdom 6825 Struct cstr 12770 ndxcnx 12771 .efcedgf 15545 iEdgciedg 15554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-2nd 6226 df-1o 6501 df-2o 6502 df-dom 6828 df-sub 8244 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-dec 9504 df-struct 12776 df-ndx 12777 df-slot 12778 df-edgf 15546 df-iedg 15556 |
| This theorem is referenced by: structgrssiedg 15582 |
| Copyright terms: Public domain | W3C validator |