| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > edgfiedgval2dom | GIF version | ||
| Description: The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) |
| Ref | Expression |
|---|---|
| basvtxval.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
| basvtxval2dom.d | ⊢ (𝜑 → 2o ≼ dom 𝐺) |
| edgfiedgval.e | ⊢ (𝜑 → 𝐸 ∈ 𝑌) |
| edgfiedgval.f | ⊢ (𝜑 → 〈(.ef‘ndx), 𝐸〉 ∈ 𝐺) |
| Ref | Expression |
|---|---|
| edgfiedgval2dom | ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basvtxval.s | . . . 4 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
| 2 | structex 13039 | . . . 4 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 4 | structn0fun 13040 | . . . 4 ⊢ (𝐺 Struct 𝑋 → Fun (𝐺 ∖ {∅})) | |
| 5 | 1, 4 | syl 14 | . . 3 ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) |
| 6 | basvtxval2dom.d | . . 3 ⊢ (𝜑 → 2o ≼ dom 𝐺) | |
| 7 | funiedgdm2domval 15825 | . . 3 ⊢ ((𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | |
| 8 | 3, 5, 6, 7 | syl3anc 1271 | . 2 ⊢ (𝜑 → (iEdg‘𝐺) = (.ef‘𝐺)) |
| 9 | edgfid 15801 | . . . 4 ⊢ .ef = Slot (.ef‘ndx) | |
| 10 | edgfndxnn 15803 | . . . 4 ⊢ (.ef‘ndx) ∈ ℕ | |
| 11 | 9, 10 | ndxslid 13052 | . . 3 ⊢ (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ) |
| 12 | edgfiedgval.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑌) | |
| 13 | edgfiedgval.f | . . 3 ⊢ (𝜑 → 〈(.ef‘ndx), 𝐸〉 ∈ 𝐺) | |
| 14 | 11, 1, 12, 13 | opelstrsl 13142 | . 2 ⊢ (𝜑 → 𝐸 = (.ef‘𝐺)) |
| 15 | 8, 14 | eqtr4d 2265 | 1 ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ∅c0 3491 {csn 3666 〈cop 3669 class class class wbr 4082 dom cdm 4718 Fun wfun 5311 ‘cfv 5317 2oc2o 6554 ≼ cdom 6884 Struct cstr 13023 ndxcnx 13024 .efcedgf 15799 iEdgciedg 15808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-2nd 6285 df-1o 6560 df-2o 6561 df-dom 6887 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 df-struct 13029 df-ndx 13030 df-slot 13031 df-edgf 15800 df-iedg 15810 |
| This theorem is referenced by: structgrssiedg 15838 |
| Copyright terms: Public domain | W3C validator |