ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmpt1f GIF version

Theorem cncfmpt1f 12742
Description: Composition of continuous functions. cn analogue of cnmpt11f 12442. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
cncfmpt1f.2 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
cncfmpt1f (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem cncfmpt1f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 12722 . . . . 5 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 14 . . . 4 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 eqid 2137 . . . . 5 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
54fmpt 5563 . . . 4 (∀𝑥𝑋 𝐴 ∈ ℂ ↔ (𝑥𝑋𝐴):𝑋⟶ℂ)
63, 5sylibr 133 . . 3 (𝜑 → ∀𝑥𝑋 𝐴 ∈ ℂ)
7 eqidd 2138 . . 3 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
8 cncfmpt1f.1 . . . . 5 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
9 cncff 12722 . . . . 5 (𝐹 ∈ (ℂ–cn→ℂ) → 𝐹:ℂ⟶ℂ)
108, 9syl 14 . . . 4 (𝜑𝐹:ℂ⟶ℂ)
1110feqmptd 5467 . . 3 (𝜑𝐹 = (𝑦 ∈ ℂ ↦ (𝐹𝑦)))
12 fveq2 5414 . . 3 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
136, 7, 11, 12fmptcof 5580 . 2 (𝜑 → (𝐹 ∘ (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ (𝐹𝐴)))
141, 8cncfco 12736 . 2 (𝜑 → (𝐹 ∘ (𝑥𝑋𝐴)) ∈ (𝑋cn→ℂ))
1513, 14eqeltrrd 2215 1 (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  wral 2414  cmpt 3984  ccom 4538  wf 5114  cfv 5118  (class class class)co 5767  cc 7611  cnccncf 12715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-2 8772  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-cncf 12716
This theorem is referenced by:  sincn  12847  coscn  12848
  Copyright terms: Public domain W3C validator