Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncfmpt1f | GIF version |
Description: Composition of continuous functions. –cn→ analogue of cnmpt11f 12924. (Contributed by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
cncfmpt1f.1 | ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) |
cncfmpt1f.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
cncfmpt1f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmpt1f.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
2 | cncff 13204 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | eqid 2165 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | |
5 | 4 | fmpt 5635 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
6 | 3, 5 | sylibr 133 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) |
7 | eqidd 2166 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
8 | cncfmpt1f.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) | |
9 | cncff 13204 | . . . . 5 ⊢ (𝐹 ∈ (ℂ–cn→ℂ) → 𝐹:ℂ⟶ℂ) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
11 | 10 | feqmptd 5539 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹‘𝑦))) |
12 | fveq2 5486 | . . 3 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
13 | 6, 7, 11, 12 | fmptcof 5652 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴))) |
14 | 1, 8 | cncfco 13218 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ (𝑋–cn→ℂ)) |
15 | 13, 14 | eqeltrrd 2244 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∀wral 2444 ↦ cmpt 4043 ∘ ccom 4608 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 –cn→ccncf 13197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-2 8916 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-cncf 13198 |
This theorem is referenced by: sincn 13330 coscn 13331 |
Copyright terms: Public domain | W3C validator |