| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version | ||
| Description: Version of fmptd 5719 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | eqid 2196 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fmptd 5719 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ↦ cmpt 4095 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: fmpt3d 5721 pw2f1odclem 6904 ctmlemr 7183 ctssdclemn0 7185 ctssdc 7188 infnninf 7199 nnnninf 7201 ismkvnex 7230 seqf1og 10632 fsumf1o 11574 isumss 11575 fisumss 11576 fsumcl2lem 11582 fsumadd 11590 isumclim3 11607 isummulc2 11610 fsummulc2 11632 isumshft 11674 prodfdivap 11731 fprodf1o 11772 prodssdc 11773 fprodssdc 11774 fprodmul 11775 gsumfzz 13199 gsumfzmptfidmadd 13547 gsumfzconst 13549 gsumfzmhm2 13552 srglmhm 13627 srgrmhm 13628 ringlghm 13695 ringrghm 13696 gsumfzfsumlemm 14221 expghmap 14241 fczpsrbag 14303 tgrest 14491 resttopon 14493 rest0 14501 cnpfval 14517 txcnp 14593 uptx 14596 cnmpt11 14605 bdxmet 14823 cncfmptc 14918 cncfmptid 14919 cdivcncfap 14926 mulcncf 14930 maxcncf 14937 mincncf 14938 ivthreinc 14967 hovercncf 14968 limcmpted 14985 dvfgg 15010 dvcnp2cntop 15021 dvmulxxbr 15024 dvcjbr 15030 dvexp 15033 dvrecap 15035 dvmptclx 15040 dvmptaddx 15041 dvmptmulx 15042 dvmptcjx 15046 dvef 15049 elply2 15057 plyf 15059 elplyd 15063 dvply2g 15088 lgseisenlem3 15399 lgseisenlem4 15400 2omap 15728 subctctexmid 15733 nninffeq 15753 iswomni0 15786 dceqnconst 15795 dcapnconst 15796 |
| Copyright terms: Public domain | W3C validator |