Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version |
Description: Version of fmptd 5650 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
Ref | Expression |
---|---|
fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | eqid 2170 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fmptd 5650 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ↦ cmpt 4050 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: fmpt3d 5652 ctmlemr 7085 ctssdclemn0 7087 ctssdc 7090 infnninf 7100 nnnninf 7102 ismkvnex 7131 fsumf1o 11353 isumss 11354 fisumss 11355 fsumcl2lem 11361 fsumadd 11369 isumclim3 11386 isummulc2 11389 fsummulc2 11411 isumshft 11453 prodfdivap 11510 fprodf1o 11551 prodssdc 11552 fprodssdc 11553 fprodmul 11554 tgrest 12963 resttopon 12965 rest0 12973 cnpfval 12989 txcnp 13065 uptx 13068 cnmpt11 13077 bdxmet 13295 cncfmptc 13376 cncfmptid 13377 cdivcncfap 13381 mulcncf 13385 limcmpted 13426 dvfgg 13451 dvcnp2cntop 13457 dvmulxxbr 13460 dvcjbr 13466 dvexp 13469 dvrecap 13471 dvmptclx 13474 dvmptaddx 13475 dvmptmulx 13476 dvmptcjx 13480 dvef 13482 subctctexmid 14034 nninffeq 14053 iswomni0 14083 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |