Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version |
Description: Version of fmptd 5639 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
Ref | Expression |
---|---|
fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | eqid 2165 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fmptd 5639 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ↦ cmpt 4043 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: fmpt3d 5641 ctmlemr 7073 ctssdclemn0 7075 ctssdc 7078 infnninf 7088 nnnninf 7090 ismkvnex 7119 fsumf1o 11331 isumss 11332 fisumss 11333 fsumcl2lem 11339 fsumadd 11347 isumclim3 11364 isummulc2 11367 fsummulc2 11389 isumshft 11431 prodfdivap 11488 fprodf1o 11529 prodssdc 11530 fprodssdc 11531 fprodmul 11532 tgrest 12809 resttopon 12811 rest0 12819 cnpfval 12835 txcnp 12911 uptx 12914 cnmpt11 12923 bdxmet 13141 cncfmptc 13222 cncfmptid 13223 cdivcncfap 13227 mulcncf 13231 limcmpted 13272 dvfgg 13297 dvcnp2cntop 13303 dvmulxxbr 13306 dvcjbr 13312 dvexp 13315 dvrecap 13317 dvmptclx 13320 dvmptaddx 13321 dvmptmulx 13322 dvmptcjx 13326 dvef 13328 subctctexmid 13881 nninffeq 13900 iswomni0 13930 dceqnconst 13938 dcapnconst 13939 |
Copyright terms: Public domain | W3C validator |