![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version |
Description: Version of fmptd 5670 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
Ref | Expression |
---|---|
fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | eqid 2177 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fmptd 5670 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ↦ cmpt 4064 ⟶wf 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 |
This theorem is referenced by: fmpt3d 5672 ctmlemr 7106 ctssdclemn0 7108 ctssdc 7111 infnninf 7121 nnnninf 7123 ismkvnex 7152 fsumf1o 11397 isumss 11398 fisumss 11399 fsumcl2lem 11405 fsumadd 11413 isumclim3 11430 isummulc2 11433 fsummulc2 11455 isumshft 11497 prodfdivap 11554 fprodf1o 11595 prodssdc 11596 fprodssdc 11597 fprodmul 11598 srglmhm 13174 srgrmhm 13175 tgrest 13639 resttopon 13641 rest0 13649 cnpfval 13665 txcnp 13741 uptx 13744 cnmpt11 13753 bdxmet 13971 cncfmptc 14052 cncfmptid 14053 cdivcncfap 14057 mulcncf 14061 limcmpted 14102 dvfgg 14127 dvcnp2cntop 14133 dvmulxxbr 14136 dvcjbr 14142 dvexp 14145 dvrecap 14147 dvmptclx 14150 dvmptaddx 14151 dvmptmulx 14152 dvmptcjx 14156 dvef 14158 subctctexmid 14720 nninffeq 14739 iswomni0 14769 dceqnconst 14777 dcapnconst 14778 |
Copyright terms: Public domain | W3C validator |