| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version | ||
| Description: Version of fmptd 5791 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | eqid 2229 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fmptd 5791 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ↦ cmpt 4145 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: fmpt3d 5793 pw2f1odclem 7003 ctmlemr 7283 ctssdclemn0 7285 ctssdc 7288 infnninf 7299 nnnninf 7301 ismkvnex 7330 seqf1og 10751 ccatcl 11136 swrdclg 11190 swrdwrdsymbg 11204 fsumf1o 11909 isumss 11910 fisumss 11911 fsumcl2lem 11917 fsumadd 11925 isumclim3 11942 isummulc2 11945 fsummulc2 11967 isumshft 12009 prodfdivap 12066 fprodf1o 12107 prodssdc 12108 fprodssdc 12109 fprodmul 12110 gsumfzz 13536 gsumfzmptfidmadd 13884 gsumfzconst 13886 gsumfzmhm2 13889 srglmhm 13964 srgrmhm 13965 ringlghm 14032 ringrghm 14033 gsumfzfsumlemm 14559 expghmap 14579 fczpsrbag 14643 mplsubgfilemm 14670 tgrest 14851 resttopon 14853 rest0 14861 cnpfval 14877 txcnp 14953 uptx 14956 cnmpt11 14965 bdxmet 15183 cncfmptc 15278 cncfmptid 15279 cdivcncfap 15286 mulcncf 15290 maxcncf 15297 mincncf 15298 ivthreinc 15327 hovercncf 15328 limcmpted 15345 dvfgg 15370 dvcnp2cntop 15381 dvmulxxbr 15384 dvcjbr 15390 dvexp 15393 dvrecap 15395 dvmptclx 15400 dvmptaddx 15401 dvmptmulx 15402 dvmptcjx 15406 dvef 15409 elply2 15417 plyf 15419 elplyd 15423 dvply2g 15448 lgseisenlem3 15759 lgseisenlem4 15760 incistruhgr 15898 2omap 16388 pw1map 16390 subctctexmid 16395 nninffeq 16416 iswomni0 16449 dceqnconst 16458 dcapnconst 16459 |
| Copyright terms: Public domain | W3C validator |