| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version | ||
| Description: Version of fmptd 5741 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | eqid 2206 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fmptd 5741 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ↦ cmpt 4109 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 |
| This theorem is referenced by: fmpt3d 5743 pw2f1odclem 6938 ctmlemr 7217 ctssdclemn0 7219 ctssdc 7222 infnninf 7233 nnnninf 7235 ismkvnex 7264 seqf1og 10673 ccatcl 11057 swrdclg 11111 swrdwrdsymbg 11125 fsumf1o 11745 isumss 11746 fisumss 11747 fsumcl2lem 11753 fsumadd 11761 isumclim3 11778 isummulc2 11781 fsummulc2 11803 isumshft 11845 prodfdivap 11902 fprodf1o 11943 prodssdc 11944 fprodssdc 11945 fprodmul 11946 gsumfzz 13371 gsumfzmptfidmadd 13719 gsumfzconst 13721 gsumfzmhm2 13724 srglmhm 13799 srgrmhm 13800 ringlghm 13867 ringrghm 13868 gsumfzfsumlemm 14393 expghmap 14413 fczpsrbag 14477 mplsubgfilemm 14504 tgrest 14685 resttopon 14687 rest0 14695 cnpfval 14711 txcnp 14787 uptx 14790 cnmpt11 14799 bdxmet 15017 cncfmptc 15112 cncfmptid 15113 cdivcncfap 15120 mulcncf 15124 maxcncf 15131 mincncf 15132 ivthreinc 15161 hovercncf 15162 limcmpted 15179 dvfgg 15204 dvcnp2cntop 15215 dvmulxxbr 15218 dvcjbr 15224 dvexp 15227 dvrecap 15229 dvmptclx 15234 dvmptaddx 15235 dvmptmulx 15236 dvmptcjx 15240 dvef 15243 elply2 15251 plyf 15253 elplyd 15257 dvply2g 15282 lgseisenlem3 15593 lgseisenlem4 15594 incistruhgr 15730 2omap 16006 subctctexmid 16011 nninffeq 16031 iswomni0 16064 dceqnconst 16073 dcapnconst 16074 |
| Copyright terms: Public domain | W3C validator |