![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version |
Description: Version of fmptd 5671 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
Ref | Expression |
---|---|
fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | eqid 2177 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fmptd 5671 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ↦ cmpt 4065 ⟶wf 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 |
This theorem is referenced by: fmpt3d 5673 ctmlemr 7107 ctssdclemn0 7109 ctssdc 7112 infnninf 7122 nnnninf 7124 ismkvnex 7153 fsumf1o 11398 isumss 11399 fisumss 11400 fsumcl2lem 11406 fsumadd 11414 isumclim3 11431 isummulc2 11434 fsummulc2 11456 isumshft 11498 prodfdivap 11555 fprodf1o 11596 prodssdc 11597 fprodssdc 11598 fprodmul 11599 srglmhm 13176 srgrmhm 13177 tgrest 13672 resttopon 13674 rest0 13682 cnpfval 13698 txcnp 13774 uptx 13777 cnmpt11 13786 bdxmet 14004 cncfmptc 14085 cncfmptid 14086 cdivcncfap 14090 mulcncf 14094 limcmpted 14135 dvfgg 14160 dvcnp2cntop 14166 dvmulxxbr 14169 dvcjbr 14175 dvexp 14178 dvrecap 14180 dvmptclx 14183 dvmptaddx 14184 dvmptmulx 14185 dvmptcjx 14189 dvef 14191 subctctexmid 14753 nninffeq 14772 iswomni0 14802 dceqnconst 14810 dcapnconst 14811 |
Copyright terms: Public domain | W3C validator |