Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version |
Description: Version of fmptd 5618 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
Ref | Expression |
---|---|
fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | eqid 2157 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fmptd 5618 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 ↦ cmpt 4025 ⟶wf 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 |
This theorem is referenced by: fmpt3d 5620 ctmlemr 7042 ctssdclemn0 7044 ctssdc 7047 infnninf 7056 nnnninf 7058 ismkvnex 7081 fsumf1o 11269 isumss 11270 fisumss 11271 fsumcl2lem 11277 fsumadd 11285 isumclim3 11302 isummulc2 11305 fsummulc2 11327 isumshft 11369 prodfdivap 11426 fprodf1o 11467 prodssdc 11468 fprodssdc 11469 fprodmul 11470 tgrest 12529 resttopon 12531 rest0 12539 cnpfval 12555 txcnp 12631 uptx 12634 cnmpt11 12643 bdxmet 12861 cncfmptc 12942 cncfmptid 12943 cdivcncfap 12947 mulcncf 12951 limcmpted 12992 dvfgg 13017 dvcnp2cntop 13023 dvmulxxbr 13026 dvcjbr 13032 dvexp 13035 dvrecap 13037 dvmptclx 13040 dvmptaddx 13041 dvmptmulx 13042 dvmptcjx 13046 dvef 13048 subctctexmid 13533 nninffeq 13554 iswomni0 13584 dceqnconst 13592 dcapnconst 13593 |
Copyright terms: Public domain | W3C validator |