| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version | ||
| Description: Version of fmptd 5762 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
| Ref | Expression |
|---|---|
| fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | eqid 2209 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fmptd 5762 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 ↦ cmpt 4124 ⟶wf 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 |
| This theorem is referenced by: fmpt3d 5764 pw2f1odclem 6963 ctmlemr 7243 ctssdclemn0 7245 ctssdc 7248 infnninf 7259 nnnninf 7261 ismkvnex 7290 seqf1og 10710 ccatcl 11094 swrdclg 11148 swrdwrdsymbg 11162 fsumf1o 11867 isumss 11868 fisumss 11869 fsumcl2lem 11875 fsumadd 11883 isumclim3 11900 isummulc2 11903 fsummulc2 11925 isumshft 11967 prodfdivap 12024 fprodf1o 12065 prodssdc 12066 fprodssdc 12067 fprodmul 12068 gsumfzz 13494 gsumfzmptfidmadd 13842 gsumfzconst 13844 gsumfzmhm2 13847 srglmhm 13922 srgrmhm 13923 ringlghm 13990 ringrghm 13991 gsumfzfsumlemm 14516 expghmap 14536 fczpsrbag 14600 mplsubgfilemm 14627 tgrest 14808 resttopon 14810 rest0 14818 cnpfval 14834 txcnp 14910 uptx 14913 cnmpt11 14922 bdxmet 15140 cncfmptc 15235 cncfmptid 15236 cdivcncfap 15243 mulcncf 15247 maxcncf 15254 mincncf 15255 ivthreinc 15284 hovercncf 15285 limcmpted 15302 dvfgg 15327 dvcnp2cntop 15338 dvmulxxbr 15341 dvcjbr 15347 dvexp 15350 dvrecap 15352 dvmptclx 15357 dvmptaddx 15358 dvmptmulx 15359 dvmptcjx 15363 dvef 15366 elply2 15374 plyf 15376 elplyd 15380 dvply2g 15405 lgseisenlem3 15716 lgseisenlem4 15717 incistruhgr 15855 2omap 16270 pw1map 16272 subctctexmid 16277 nninffeq 16297 iswomni0 16330 dceqnconst 16339 dcapnconst 16340 |
| Copyright terms: Public domain | W3C validator |