ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpttd GIF version

Theorem fmpttd 5527
Description: Version of fmptd 5526 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.)
Hypothesis
Ref Expression
fmpttd.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fmpttd (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fmpttd
StepHypRef Expression
1 fmpttd.1 . 2 ((𝜑𝑥𝐴) → 𝐵𝐶)
2 eqid 2113 . 2 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
31, 2fmptd 5526 1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1461  cmpt 3947  wf 5075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087
This theorem is referenced by:  fmpt3d  5528  ctmlemr  6943  ctssdclemn0  6945  ctssdc  6948  fsumf1o  11045  isumss  11046  fisumss  11047  fsumcl2lem  11053  fsumadd  11061  isumclim3  11078  isummulc2  11081  fsummulc2  11103  isumshft  11145  tgrest  12175  resttopon  12177  rest0  12185  cnpfval  12201  txcnp  12276  uptx  12279  cnmpt11  12288  bdxmet  12484  cncfmptc  12562  cncfmptid  12563  cdivcncfap  12567  mulcncf  12571  limcmpted  12582  dvfgg  12606  dvcnp2cntop  12612  nninffeq  12897
  Copyright terms: Public domain W3C validator