![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fmpttd | GIF version |
Description: Version of fmptd 5713 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.) |
Ref | Expression |
---|---|
fmpttd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
fmpttd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpttd.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | eqid 2193 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fmptd 5713 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ↦ cmpt 4091 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 |
This theorem is referenced by: fmpt3d 5715 pw2f1odclem 6892 ctmlemr 7169 ctssdclemn0 7171 ctssdc 7174 infnninf 7185 nnnninf 7187 ismkvnex 7216 seqf1og 10595 fsumf1o 11536 isumss 11537 fisumss 11538 fsumcl2lem 11544 fsumadd 11552 isumclim3 11569 isummulc2 11572 fsummulc2 11594 isumshft 11636 prodfdivap 11693 fprodf1o 11734 prodssdc 11735 fprodssdc 11736 fprodmul 11737 gsumfzz 13070 gsumfzmptfidmadd 13412 gsumfzconst 13414 gsumfzmhm2 13417 srglmhm 13492 srgrmhm 13493 ringlghm 13560 ringrghm 13561 gsumfzfsumlemm 14086 expghmap 14106 fczpsrbag 14168 tgrest 14348 resttopon 14350 rest0 14358 cnpfval 14374 txcnp 14450 uptx 14453 cnmpt11 14462 bdxmet 14680 cncfmptc 14775 cncfmptid 14776 cdivcncfap 14783 mulcncf 14787 maxcncf 14794 mincncf 14795 ivthreinc 14824 hovercncf 14825 limcmpted 14842 dvfgg 14867 dvcnp2cntop 14878 dvmulxxbr 14881 dvcjbr 14887 dvexp 14890 dvrecap 14892 dvmptclx 14897 dvmptaddx 14898 dvmptmulx 14899 dvmptcjx 14903 dvef 14906 elply2 14914 plyf 14916 elplyd 14920 lgseisenlem3 15229 lgseisenlem4 15230 subctctexmid 15561 nninffeq 15580 iswomni0 15611 dceqnconst 15620 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |