Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2cnd | GIF version |
Description: 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2cnd | ⊢ (𝜑 → 2 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8928 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 2 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℂcc 7751 2c2 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-2 8916 |
This theorem is referenced by: cnm2m1cnm3 9108 xp1d2m1eqxm1d2 9109 nneo 9294 zeo2 9297 2tnp1ge0ge0 10236 flhalf 10237 q2txmodxeq0 10319 mulbinom2 10571 binom3 10572 zesq 10573 sqoddm1div8 10608 cvg1nlemcxze 10924 resqrexlemover 10952 resqrexlemlo 10955 resqrexlemcalc1 10956 resqrexlemnm 10960 amgm2 11060 maxabslemab 11148 maxabslemlub 11149 max0addsup 11161 minabs 11177 bdtri 11181 trirecip 11442 geo2sum 11455 ege2le3 11612 efgt0 11625 tanval3ap 11655 even2n 11811 oddm1even 11812 oddp1even 11813 mulsucdiv2z 11822 ltoddhalfle 11830 m1exp1 11838 nn0enne 11839 flodddiv4 11871 flodddiv4t2lthalf 11874 sqrt2irrlem 12093 sqrt2irr 12094 pw2dvdslemn 12097 pw2dvdseulemle 12099 oddpwdc 12106 sqrt2irraplemnn 12111 prmdiv 12167 pythagtriplem15 12210 pythagtriplem16 12211 pythagtriplem17 12212 4sqlem7 12314 4sqlem10 12317 oddennn 12325 evenennn 12326 sin0pilem2 13343 lgslem1 13541 cvgcmp2nlemabs 13911 trilpolemisumle 13917 apdifflemr 13926 apdiff 13927 |
Copyright terms: Public domain | W3C validator |