![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2cnd | GIF version |
Description: 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2cnd | ⊢ (𝜑 → 2 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8990 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 2 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 ℂcc 7809 2c2 8970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3136 df-ss 3143 df-2 8978 |
This theorem is referenced by: cnm2m1cnm3 9170 xp1d2m1eqxm1d2 9171 nneo 9356 zeo2 9359 2tnp1ge0ge0 10301 flhalf 10302 q2txmodxeq0 10384 mulbinom2 10637 binom3 10638 zesq 10639 sqoddm1div8 10674 mulsubdivbinom2ap 10691 cvg1nlemcxze 10991 resqrexlemover 11019 resqrexlemlo 11022 resqrexlemcalc1 11023 resqrexlemnm 11027 amgm2 11127 maxabslemab 11215 maxabslemlub 11216 max0addsup 11228 minabs 11244 bdtri 11248 trirecip 11509 geo2sum 11522 ege2le3 11679 efgt0 11692 tanval3ap 11722 even2n 11879 oddm1even 11880 oddp1even 11881 mulsucdiv2z 11890 ltoddhalfle 11898 m1exp1 11906 nn0enne 11907 flodddiv4 11939 flodddiv4t2lthalf 11942 sqrt2irrlem 12161 sqrt2irr 12162 pw2dvdslemn 12165 pw2dvdseulemle 12167 oddpwdc 12174 sqrt2irraplemnn 12179 prmdiv 12235 pythagtriplem15 12278 pythagtriplem16 12279 pythagtriplem17 12280 4sqlem7 12382 4sqlem10 12385 oddennn 12393 evenennn 12394 sin0pilem2 14206 lgslem1 14404 lgseisenlem1 14453 lgseisenlem2 14454 cvgcmp2nlemabs 14783 trilpolemisumle 14789 apdifflemr 14798 apdiff 14799 |
Copyright terms: Public domain | W3C validator |