Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2cnd | GIF version |
Description: 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2cnd | ⊢ (𝜑 → 2 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8949 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 2 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7772 2c2 8929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-2 8937 |
This theorem is referenced by: cnm2m1cnm3 9129 xp1d2m1eqxm1d2 9130 nneo 9315 zeo2 9318 2tnp1ge0ge0 10257 flhalf 10258 q2txmodxeq0 10340 mulbinom2 10592 binom3 10593 zesq 10594 sqoddm1div8 10629 cvg1nlemcxze 10946 resqrexlemover 10974 resqrexlemlo 10977 resqrexlemcalc1 10978 resqrexlemnm 10982 amgm2 11082 maxabslemab 11170 maxabslemlub 11171 max0addsup 11183 minabs 11199 bdtri 11203 trirecip 11464 geo2sum 11477 ege2le3 11634 efgt0 11647 tanval3ap 11677 even2n 11833 oddm1even 11834 oddp1even 11835 mulsucdiv2z 11844 ltoddhalfle 11852 m1exp1 11860 nn0enne 11861 flodddiv4 11893 flodddiv4t2lthalf 11896 sqrt2irrlem 12115 sqrt2irr 12116 pw2dvdslemn 12119 pw2dvdseulemle 12121 oddpwdc 12128 sqrt2irraplemnn 12133 prmdiv 12189 pythagtriplem15 12232 pythagtriplem16 12233 pythagtriplem17 12234 4sqlem7 12336 4sqlem10 12339 oddennn 12347 evenennn 12348 sin0pilem2 13497 lgslem1 13695 cvgcmp2nlemabs 14064 trilpolemisumle 14070 apdifflemr 14079 apdiff 14080 |
Copyright terms: Public domain | W3C validator |