HomeHome Intuitionistic Logic Explorer
Theorem List (p. 110 of 145)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10901-11000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcjne0 10901 A number is nonzero iff its complex conjugate is nonzero. Also see cjap0 10900 which is similar but for apartness. (Contributed by NM, 29-Apr-2005.)
(𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
 
Theoremcjdivap 10902 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremcnrecnv 10903* The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 9639. (Contributed by Mario Carneiro, 25-Aug-2014.)
𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))       𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
 
Theoremrecli 10904 The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (ℜ‘𝐴) ∈ ℝ
 
Theoremimcli 10905 The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (ℑ‘𝐴) ∈ ℝ
 
Theoremcjcli 10906 Closure law for complex conjugate. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (∗‘𝐴) ∈ ℂ
 
Theoremreplimi 10907 Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ       𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))
 
Theoremcjcji 10908 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (∗‘(∗‘𝐴)) = 𝐴
 
Theoremreim0bi 10909 A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)
 
Theoremrerebi 10910 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)
 
Theoremcjrebi 10911 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)
 
Theoremrecji 10912 Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)
 
Theoremimcji 10913 Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)
 
Theoremcjmulrcli 10914 A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (𝐴 · (∗‘𝐴)) ∈ ℝ
 
Theoremcjmulvali 10915 A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))
 
Theoremcjmulge0i 10916 A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.)
𝐴 ∈ ℂ       0 ≤ (𝐴 · (∗‘𝐴))
 
Theoremrenegi 10917 Real part of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (ℜ‘-𝐴) = -(ℜ‘𝐴)
 
Theoremimnegi 10918 Imaginary part of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (ℑ‘-𝐴) = -(ℑ‘𝐴)
 
Theoremcjnegi 10919 Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (∗‘-𝐴) = -(∗‘𝐴)
 
Theoremaddcji 10920 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))
 
Theoremreaddi 10921 Real part distributes over addition. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))
 
Theoremimaddi 10922 Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))
 
Theoremremuli 10923 Real part of a product. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))
 
Theoremimmuli 10924 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))
 
Theoremcjaddi 10925 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))
 
Theoremcjmuli 10926 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))
 
Theoremipcni 10927 Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))
 
Theoremcjdivapi 10928 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremcrrei 10929 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴
 
Theoremcrimi 10930 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵
 
Theoremrecld 10931 The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘𝐴) ∈ ℝ)
 
Theoremimcld 10932 The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℑ‘𝐴) ∈ ℝ)
 
Theoremcjcld 10933 Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘𝐴) ∈ ℂ)
 
Theoremreplimd 10934 Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
 
Theoremremimd 10935 Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
 
Theoremcjcjd 10936 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘(∗‘𝐴)) = 𝐴)
 
Theoremreim0bd 10937 A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (ℑ‘𝐴) = 0)       (𝜑𝐴 ∈ ℝ)
 
Theoremrerebd 10938 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (ℜ‘𝐴) = 𝐴)       (𝜑𝐴 ∈ ℝ)
 
Theoremcjrebd 10939 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (∗‘𝐴) = 𝐴)       (𝜑𝐴 ∈ ℝ)
 
Theoremcjne0d 10940 A number which is nonzero has a complex conjugate which is nonzero. Also see cjap0d 10941 which is similar but for apartness. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (∗‘𝐴) ≠ 0)
 
Theoremcjap0d 10941 A number which is apart from zero has a complex conjugate which is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (∗‘𝐴) # 0)
 
Theoremrecjd 10942 Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))
 
Theoremimcjd 10943 Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
 
Theoremcjmulrcld 10944 A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · (∗‘𝐴)) ∈ ℝ)
 
Theoremcjmulvald 10945 A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremcjmulge0d 10946 A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → 0 ≤ (𝐴 · (∗‘𝐴)))
 
Theoremrenegd 10947 Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘-𝐴) = -(ℜ‘𝐴))
 
Theoremimnegd 10948 Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℑ‘-𝐴) = -(ℑ‘𝐴))
 
Theoremcjnegd 10949 Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘-𝐴) = -(∗‘𝐴))
 
Theoremaddcjd 10950 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)))
 
Theoremcjexpd 10951 Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
 
Theoremreaddd 10952 Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
 
Theoremimaddd 10953 Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
 
Theoremresubd 10954 Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
 
Theoremimsubd 10955 Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
 
Theoremremuld 10956 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremimmuld 10957 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
 
Theoremcjaddd 10958 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
 
Theoremcjmuld 10959 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
 
Theoremipcnd 10960 Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremcjdivapd 10961 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremrered 10962 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (ℜ‘𝐴) = 𝐴)
 
Theoremreim0d 10963 The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (ℑ‘𝐴) = 0)
 
Theoremcjred 10964 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (∗‘𝐴) = 𝐴)
 
Theoremremul2d 10965 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))
 
Theoremimmul2d 10966 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵)))
 
Theoremredivapd 10967 Real part of a division. Related to remul2 10866. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴))
 
Theoremimdivapd 10968 Imaginary part of a division. Related to remul2 10866. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴))
 
Theoremcrred 10969 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
 
Theoremcrimd 10970 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
 
Theoremcnreim 10971 Complex apartness in terms of real and imaginary parts. See also apreim 8550 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
 
4.7.3  Sequence convergence
 
Theoremcaucvgrelemrec 10972* Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝑟 ∈ ℝ (𝐴 · 𝑟) = 1) = (1 / 𝐴))
 
Theoremcaucvgrelemcau 10973* Lemma for caucvgre 10974. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))       (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
 
Theoremcaucvgre 10974* Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
Theoremcvg1nlemcxze 10975 Lemma for cvg1n 10979. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
(𝜑𝐶 ∈ ℝ+)    &   (𝜑𝑋 ∈ ℝ+)    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐸 ∈ ℕ)    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)       (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))
 
Theoremcvg1nlemf 10976* Lemma for cvg1n 10979. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑𝐺:ℕ⟶ℝ)
 
Theoremcvg1nlemcau 10977* Lemma for cvg1n 10979. By selecting spaced out terms for the modified sequence 𝐺, the terms are within 1 / 𝑛 (without the constant 𝐶). (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐺𝑛) < ((𝐺𝑘) + (1 / 𝑛)) ∧ (𝐺𝑘) < ((𝐺𝑛) + (1 / 𝑛))))
 
Theoremcvg1nlemres 10978* Lemma for cvg1n 10979. The original sequence 𝐹 has a limit (turns out it is the same as the limit of the modified sequence 𝐺). (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
Theoremcvg1n 10979* Convergence of real sequences.

This is a version of caucvgre 10974 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
Theoremuzin2 10980 The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)
 
Theoremrexanuz 10981* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
(∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
 
Theoremrexfiuz 10982* Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
(𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
 
Theoremrexuz3 10983* Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
 
Theoremrexanuz2 10984* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
𝑍 = (ℤ𝑀)       (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
 
Theoremr19.29uz 10985* A version of 19.29 1620 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
𝑍 = (ℤ𝑀)       ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
 
Theoremr19.2uz 10986* A version of r19.2m 3509 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
𝑍 = (ℤ𝑀)       (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
 
Theoremrecvguniqlem 10987 Lemma for recvguniq 10988. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝐴 < ((𝐹𝐾) + ((𝐴𝐵) / 2)))    &   (𝜑 → (𝐹𝐾) < (𝐵 + ((𝐴𝐵) / 2)))       (𝜑 → ⊥)
 
Theoremrecvguniq 10988* Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))       (𝜑𝐿 = 𝑀)
 
4.7.4  Square root; absolute value
 
Syntaxcsqrt 10989 Extend class notation to include square root of a complex number.
class
 
Syntaxcabs 10990 Extend class notation to include a function for the absolute value (modulus) of a complex number.
class abs
 
Definitiondf-rsqrt 10991* Define a function whose value is the square root of a nonnegative real number.

Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root.

(Contributed by Jim Kingdon, 23-Aug-2020.)

√ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦)))
 
Definitiondf-abs 10992 Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.)
abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
 
Theoremsqrtrval 10993* Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
(𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
 
Theoremabsval 10994 The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
 
Theoremrennim 10995 A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
(𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)
 
Theoremsqrt0rlem 10996 Lemma for sqrt0 10997. (Contributed by Jim Kingdon, 26-Aug-2020.)
((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) ↔ 𝐴 = 0)
 
Theoremsqrt0 10997 Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
(√‘0) = 0
 
Theoremresqrexlem1arp 10998 Lemma for resqrex 11019. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10447 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+)
 
Theoremresqrexlemp1rp 10999* Lemma for resqrex 11019. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10447 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
 
Theoremresqrexlemf 11000* Lemma for resqrex 11019. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑𝐹:ℕ⟶ℝ+)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14485
  Copyright terms: Public domain < Previous  Next >