Home Intuitionistic Logic ExplorerTheorem List (p. 110 of 135) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10901-11000   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremabssub 10901 Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))

Theoremabssubge0 10902 Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) = (𝐵𝐴))

Theoremabssuble0 10903 Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))

Theoremabstri 10904 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Theoremabs3dif 10905 Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))

Theoremabs2dif 10906 Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))

Theoremabs2dif2 10907 Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Theoremabs2difabs 10908 Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))

Theoremrecan 10909* Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∀𝑥 ∈ ℂ (ℜ‘(𝑥 · 𝐴)) = (ℜ‘(𝑥 · 𝐵)) ↔ 𝐴 = 𝐵))

Theoremabsf 10910 Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.)
abs:ℂ⟶ℝ

Theoremabs3lem 10911 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷))

Theoremfzomaxdiflem 10912 Lemma for fzomaxdif 10913. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))

Theoremfzomaxdif 10913 A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)))

Theoremcau3lem 10914* Lemma for cau3 10915. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
𝑍 ⊆ ℤ    &   (𝜏𝜓)    &   ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))    &   ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))    &   ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))    &   ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))    &   ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))       (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))

Theoremcau3 10915* Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 10788 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
𝑍 = (ℤ𝑀)       (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))

Theoremcau4 10916* Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)       (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))

Theoremcaubnd2 10917* A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
𝑍 = (ℤ𝑀)       (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)

Theoremamgm2 10918 Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))

Theoremsqrtthi 10919 Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴)

Theoremsqrtcli 10920 The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ)

Theoremsqrtgt0i 10921 The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ       (0 < 𝐴 → 0 < (√‘𝐴))

Theoremsqrtmsqi 10922 Square root of square. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴)

Theoremsqrtsqi 10923 Square root of square. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴)

Theoremsqsqrti 10924 Square of square root. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴)

Theoremsqrtge0i 10925 The square root of a nonnegative real is nonnegative. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → 0 ≤ (√‘𝐴))

Theoremabsidi 10926 A nonnegative number is its own absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴)

Theoremabsnidi 10927 A negative number is the negative of its own absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴)

Theoremleabsi 10928 A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       𝐴 ≤ (abs‘𝐴)

Theoremabsrei 10929 Absolute value of a real number. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ       (abs‘𝐴) = (√‘(𝐴↑2))

Theoremsqrtpclii 10930 The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    &   0 < 𝐴       (√‘𝐴) ∈ ℝ

Theoremsqrtgt0ii 10931 The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    &   0 < 𝐴       0 < (√‘𝐴)

Theoremsqrt11i 10932 The square root function is one-to-one. (Contributed by NM, 27-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵))

Theoremsqrtmuli 10933 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))

Theoremsqrtmulii 10934 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 ≤ 𝐴    &   0 ≤ 𝐵       (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))

Theoremsqrtmsq2i 10935 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵𝐴 = (𝐵 · 𝐵)))

Theoremsqrtlei 10936 Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))

Theoremsqrtlti 10937 Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))

Theoremabslti 10938 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵))

Theoremabslei 10939 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵))

Theoremabsvalsqi 10940 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))

Theoremabsvalsq2i 10941 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))

Theoremabscli 10942 Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (abs‘𝐴) ∈ ℝ

Theoremabsge0i 10943 Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       0 ≤ (abs‘𝐴)

Theoremabsval2i 10944 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))

Theoremabs00i 10945 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴) = 0 ↔ 𝐴 = 0)

Theoremabsgt0api 10946 The absolute value of a nonzero number is positive. Remark in [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 # 0 ↔ 0 < (abs‘𝐴))

Theoremabsnegi 10947 Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (abs‘-𝐴) = (abs‘𝐴)

Theoremabscji 10948 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (abs‘(∗‘𝐴)) = (abs‘𝐴)

Theoremreleabsi 10949 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℜ‘𝐴) ≤ (abs‘𝐴)

Theoremabssubi 10950 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴))

Theoremabsmuli 10951 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))

Theoremsqabsaddi 10952 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))

Theoremsqabssubi 10953 Square of absolute value of difference. (Contributed by Steve Rodriguez, 20-Jan-2007.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘(𝐴𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))

Theoremabsdivapzi 10954 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))

Theoremabstrii 10955 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))

Theoremabs3difi 10956 Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵)))

Theoremabs3lemi 10957 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℝ       (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷)

Theoremrpsqrtcld 10958 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (√‘𝐴) ∈ ℝ+)

Theoremsqrtgt0d 10959 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → 0 < (√‘𝐴))

Theoremabsnidd 10960 A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≤ 0)       (𝜑 → (abs‘𝐴) = -𝐴)

Theoremleabsd 10961 A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≤ (abs‘𝐴))

Theoremabsred 10962 Absolute value of a real number. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2)))

Theoremresqrtcld 10963 The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘𝐴) ∈ ℝ)

Theoremsqrtmsqd 10964 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴)

Theoremsqrtsqd 10965 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴↑2)) = 𝐴)

Theoremsqrtge0d 10966 The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → 0 ≤ (√‘𝐴))

Theoremabsidd 10967 A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (abs‘𝐴) = 𝐴)

Theoremsqrtdivd 10968 Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))

Theoremsqrtmuld 10969 Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))

Theoremsqrtsq2d 10970 Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → ((√‘𝐴) = 𝐵𝐴 = (𝐵↑2)))

Theoremsqrtled 10971 Square root is monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))

Theoremsqrtltd 10972 Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))

Theoremsqr11d 10973 The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑 → (√‘𝐴) = (√‘𝐵))       (𝜑𝐴 = 𝐵)

Theoremabsltd 10974 Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))

Theoremabsled 10975 Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))

Theoremabssubge0d 10976 Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐵𝐴)) = (𝐵𝐴))

Theoremabssuble0d 10977 Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐴𝐵)) = (𝐵𝐴))

Theoremabsdifltd 10978 The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) < 𝐶 ↔ ((𝐵𝐶) < 𝐴𝐴 < (𝐵 + 𝐶))))

Theoremabsdifled 10979 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) ≤ 𝐶 ↔ ((𝐵𝐶) ≤ 𝐴𝐴 ≤ (𝐵 + 𝐶))))

Theoremicodiamlt 10980 Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))

Theoremabscld 10981 Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) ∈ ℝ)

Theoremabsvalsqd 10982 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))

Theoremabsvalsq2d 10983 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))

Theoremabsge0d 10984 Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → 0 ≤ (abs‘𝐴))

Theoremabsval2d 10985 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))

Theoremabs00d 10986 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) = 0)       (𝜑𝐴 = 0)

Theoremabsne0d 10987 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (abs‘𝐴) ≠ 0)

Theoremabsrpclapd 10988 The absolute value of a complex number apart from zero is a positive real. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (abs‘𝐴) ∈ ℝ+)

Theoremabsnegd 10989 Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘-𝐴) = (abs‘𝐴))

Theoremabscjd 10990 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴))

Theoremreleabsd 10991 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴))

Theoremabsexpd 10992 Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Theoremabssubd 10993 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))

Theoremabsmuld 10994 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))

Theoremabsdivapd 10995 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))

Theoremabstrid 10996 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Theoremabs2difd 10997 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))

Theoremabs2dif2d 10998 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))

Theoremabs2difabsd 10999 Absolute value of difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))

Theoremabs3difd 11000 Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13424
 Copyright terms: Public domain < Previous  Next >