HomeHome Intuitionistic Logic Explorer
Theorem List (p. 110 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10901-11000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreaddd 10901 Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
 
Theoremimaddd 10902 Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
 
Theoremresubd 10903 Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
 
Theoremimsubd 10904 Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
 
Theoremremuld 10905 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremimmuld 10906 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
 
Theoremcjaddd 10907 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
 
Theoremcjmuld 10908 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
 
Theoremipcnd 10909 Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremcjdivapd 10910 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremrered 10911 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (ℜ‘𝐴) = 𝐴)
 
Theoremreim0d 10912 The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (ℑ‘𝐴) = 0)
 
Theoremcjred 10913 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (∗‘𝐴) = 𝐴)
 
Theoremremul2d 10914 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))
 
Theoremimmul2d 10915 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵)))
 
Theoremredivapd 10916 Real part of a division. Related to remul2 10815. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴))
 
Theoremimdivapd 10917 Imaginary part of a division. Related to remul2 10815. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴))
 
Theoremcrred 10918 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
 
Theoremcrimd 10919 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
 
Theoremcnreim 10920 Complex apartness in terms of real and imaginary parts. See also apreim 8501 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
 
4.7.3  Sequence convergence
 
Theoremcaucvgrelemrec 10921* Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝑟 ∈ ℝ (𝐴 · 𝑟) = 1) = (1 / 𝐴))
 
Theoremcaucvgrelemcau 10922* Lemma for caucvgre 10923. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))       (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
 
Theoremcaucvgre 10923* Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
Theoremcvg1nlemcxze 10924 Lemma for cvg1n 10928. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
(𝜑𝐶 ∈ ℝ+)    &   (𝜑𝑋 ∈ ℝ+)    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐸 ∈ ℕ)    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)       (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))
 
Theoremcvg1nlemf 10925* Lemma for cvg1n 10928. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑𝐺:ℕ⟶ℝ)
 
Theoremcvg1nlemcau 10926* Lemma for cvg1n 10928. By selecting spaced out terms for the modified sequence 𝐺, the terms are within 1 / 𝑛 (without the constant 𝐶). (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐺𝑛) < ((𝐺𝑘) + (1 / 𝑛)) ∧ (𝐺𝑘) < ((𝐺𝑛) + (1 / 𝑛))))
 
Theoremcvg1nlemres 10927* Lemma for cvg1n 10928. The original sequence 𝐹 has a limit (turns out it is the same as the limit of the modified sequence 𝐺). (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
Theoremcvg1n 10928* Convergence of real sequences.

This is a version of caucvgre 10923 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
Theoremuzin2 10929 The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)
 
Theoremrexanuz 10930* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
(∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
 
Theoremrexfiuz 10931* Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
(𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
 
Theoremrexuz3 10932* Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
 
Theoremrexanuz2 10933* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
𝑍 = (ℤ𝑀)       (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
 
Theoremr19.29uz 10934* A version of 19.29 1608 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
𝑍 = (ℤ𝑀)       ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
 
Theoremr19.2uz 10935* A version of r19.2m 3495 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
𝑍 = (ℤ𝑀)       (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
 
Theoremrecvguniqlem 10936 Lemma for recvguniq 10937. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝐴 < ((𝐹𝐾) + ((𝐴𝐵) / 2)))    &   (𝜑 → (𝐹𝐾) < (𝐵 + ((𝐴𝐵) / 2)))       (𝜑 → ⊥)
 
Theoremrecvguniq 10937* Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))       (𝜑𝐿 = 𝑀)
 
4.7.4  Square root; absolute value
 
Syntaxcsqrt 10938 Extend class notation to include square root of a complex number.
class
 
Syntaxcabs 10939 Extend class notation to include a function for the absolute value (modulus) of a complex number.
class abs
 
Definitiondf-rsqrt 10940* Define a function whose value is the square root of a nonnegative real number.

Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root.

(Contributed by Jim Kingdon, 23-Aug-2020.)

√ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦)))
 
Definitiondf-abs 10941 Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.)
abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
 
Theoremsqrtrval 10942* Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
(𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
 
Theoremabsval 10943 The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
 
Theoremrennim 10944 A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
(𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)
 
Theoremsqrt0rlem 10945 Lemma for sqrt0 10946. (Contributed by Jim Kingdon, 26-Aug-2020.)
((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) ↔ 𝐴 = 0)
 
Theoremsqrt0 10946 Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
(√‘0) = 0
 
Theoremresqrexlem1arp 10947 Lemma for resqrex 10968. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10396 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+)
 
Theoremresqrexlemp1rp 10948* Lemma for resqrex 10968. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10396 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
 
Theoremresqrexlemf 10949* Lemma for resqrex 10968. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑𝐹:ℕ⟶ℝ+)
 
Theoremresqrexlemf1 10950* Lemma for resqrex 10968. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (𝐹‘1) = (1 + 𝐴))
 
Theoremresqrexlemfp1 10951* Lemma for resqrex 10968. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
 
Theoremresqrexlemover 10952* Lemma for resqrex 10968. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁)↑2))
 
Theoremresqrexlemdec 10953* Lemma for resqrex 10968. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
 
Theoremresqrexlemdecn 10954* Lemma for resqrex 10968. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (𝐹𝑀) < (𝐹𝑁))
 
Theoremresqrexlemlo 10955* Lemma for resqrex 10968. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
 
Theoremresqrexlemcalc1 10956* Lemma for resqrex 10968. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
 
Theoremresqrexlemcalc2 10957* Lemma for resqrex 10968. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
 
Theoremresqrexlemcalc3 10958* Lemma for resqrex 10968. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
 
Theoremresqrexlemnmsq 10959* Lemma for resqrex 10968. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁𝑀)       (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
 
Theoremresqrexlemnm 10960* Lemma for resqrex 10968. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁𝑀)       (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
 
Theoremresqrexlemcvg 10961* Lemma for resqrex 10968. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
 
Theoremresqrexlemgt0 10962* Lemma for resqrex 10968. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))       (𝜑 → 0 ≤ 𝐿)
 
Theoremresqrexlemoverl 10963* Lemma for resqrex 10968. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   (𝜑𝐾 ∈ ℕ)       (𝜑𝐿 ≤ (𝐹𝐾))
 
Theoremresqrexlemglsq 10964* Lemma for resqrex 10968. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))       (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
 
Theoremresqrexlemga 10965* Lemma for resqrex 10968. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))       (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
 
Theoremresqrexlemsqa 10966* Lemma for resqrex 10968. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))       (𝜑 → (𝐿↑2) = 𝐴)
 
Theoremresqrexlemex 10967* Lemma for resqrex 10968. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
 
Theoremresqrex 10968* Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
 
Theoremrsqrmo 10969* Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
 
Theoremrersqreu 10970* Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
 
Theoremresqrtcl 10971 Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
 
Theoremrersqrtthlem 10972 Lemma for resqrtth 10973. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (√‘𝐴)))
 
Theoremresqrtth 10973 Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
 
Theoremremsqsqrt 10974 Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) · (√‘𝐴)) = 𝐴)
 
Theoremsqrtge0 10975 The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴))
 
Theoremsqrtgt0 10976 The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (√‘𝐴))
 
Theoremsqrtmul 10977 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))
 
Theoremsqrtle 10978 Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))
 
Theoremsqrtlt 10979 Square root is strictly monotonic. Closed form of sqrtlti 11079. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))
 
Theoremsqrt11ap 10980 Analogue to sqrt11 10981 but for apartness. (Contributed by Jim Kingdon, 11-Aug-2021.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) # (√‘𝐵) ↔ 𝐴 # 𝐵))
 
Theoremsqrt11 10981 The square root function is one-to-one. Also see sqrt11ap 10980 which would follow easily from this given excluded middle, but which is proved another way without it. (Contributed by Scott Fenton, 11-Jun-2013.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremsqrt00 10982 A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) = 0 ↔ 𝐴 = 0))
 
Theoremrpsqrtcl 10983 The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.)
(𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+)
 
Theoremsqrtdiv 10984 Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))
 
Theoremsqrtsq2 10985 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = 𝐵𝐴 = (𝐵↑2)))
 
Theoremsqrtsq 10986 Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴)
 
Theoremsqrtmsq 10987 Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · 𝐴)) = 𝐴)
 
Theoremsqrt1 10988 The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.)
(√‘1) = 1
 
Theoremsqrt4 10989 The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.)
(√‘4) = 2
 
Theoremsqrt9 10990 The square root of 9 is 3. (Contributed by NM, 11-May-2004.)
(√‘9) = 3
 
Theoremsqrt2gt1lt2 10991 The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
(1 < (√‘2) ∧ (√‘2) < 2)
 
Theoremabsneg 10992 Absolute value of negative. (Contributed by NM, 27-Feb-2005.)
(𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
 
Theoremabscl 10993 Real closure of absolute value. (Contributed by NM, 3-Oct-1999.)
(𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
 
Theoremabscj 10994 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.)
(𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
 
Theoremabsvalsq 10995 Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
 
Theoremabsvalsq2 10996 Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.)
(𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremsqabsadd 10997 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
 
Theoremsqabssub 10998 Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
 
Theoremabsval2 10999 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.)
(𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
 
Theoremabs0 11000 The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.)
(abs‘0) = 0
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >