ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioo2 GIF version

Theorem elioo2 10015
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
elioo2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))

Proof of Theorem elioo2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooval2 10009 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
21eleq2d 2266 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)}))
3 breq2 4038 . . . . 5 (𝑥 = 𝐶 → (𝐴 < 𝑥𝐴 < 𝐶))
4 breq1 4037 . . . . 5 (𝑥 = 𝐶 → (𝑥 < 𝐵𝐶 < 𝐵))
53, 4anbi12d 473 . . . 4 (𝑥 = 𝐶 → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
65elrab 2920 . . 3 (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
7 3anass 984 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
86, 7bitr4i 187 . 2 (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵))
92, 8bitrdi 196 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {crab 2479   class class class wbr 4034  (class class class)co 5925  cr 7897  *cxr 8079   < clt 8080  (,)cioo 9982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-ioo 9986
This theorem is referenced by:  eliooord  10022  elioopnf  10061  elioomnf  10062  dfrp2  10372  bl2ioo  14872  dedekindicc  14955  reeff1oleme  15094  reeff1o  15095  sin0pilem2  15104  pilem3  15105  sincosq1sgn  15148  sincosq2sgn  15149  sincosq3sgn  15150  sincosq4sgn  15151  sinq12gt0  15152  cosq14gt0  15154  cosq23lt0  15155  coseq0q4123  15156  coseq00topi  15157  coseq0negpitopi  15158  sincos6thpi  15164  cosordlem  15171  cos02pilt1  15173  cos0pilt1  15174  ioocosf1o  15176  iooref1o  15769  taupi  15808
  Copyright terms: Public domain W3C validator