ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzsub GIF version

Theorem eluzsub 9379
Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eluzsub ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁𝐾) ∈ (ℤ𝑀))

Proof of Theorem eluzsub
StepHypRef Expression
1 eluzelz 9359 . . . 4 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑁 ∈ ℤ)
213ad2ant3 1005 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑁 ∈ ℤ)
3 simp2 983 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝐾 ∈ ℤ)
42, 3zsubcld 9202 . 2 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁𝐾) ∈ ℤ)
5 simp3 984 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑁 ∈ (ℤ‘(𝑀 + 𝐾)))
6 simp1 982 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑀 ∈ ℤ)
76, 3zaddcld 9201 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑀 + 𝐾) ∈ ℤ)
8 eluz1 9354 . . . . . 6 ((𝑀 + 𝐾) ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁)))
97, 8syl 14 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁)))
105, 9mpbid 146 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁))
1110simprd 113 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑀 + 𝐾) ≤ 𝑁)
126zred 9197 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑀 ∈ ℝ)
133zred 9197 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝐾 ∈ ℝ)
142zred 9197 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑁 ∈ ℝ)
15 leaddsub 8224 . . . 4 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
1612, 13, 14, 15syl3anc 1217 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
1711, 16mpbid 146 . 2 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑀 ≤ (𝑁𝐾))
18 eluz1 9354 . . 3 (𝑀 ∈ ℤ → ((𝑁𝐾) ∈ (ℤ𝑀) ↔ ((𝑁𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁𝐾))))
196, 18syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑁𝐾) ∈ (ℤ𝑀) ↔ ((𝑁𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁𝐾))))
204, 17, 19mpbir2and 929 1 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁𝐾) ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 1481   class class class wbr 3937  cfv 5131  (class class class)co 5782  cr 7643   + caddc 7647  cle 7825  cmin 7957  cz 9078  cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  fzoss2  9980  shftuz  10621  climshftlemg  11103  isumshft  11291
  Copyright terms: Public domain W3C validator