ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzsub GIF version

Theorem eluzsub 9678
Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eluzsub ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁𝐾) ∈ (ℤ𝑀))

Proof of Theorem eluzsub
StepHypRef Expression
1 eluzelz 9657 . . . 4 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑁 ∈ ℤ)
213ad2ant3 1023 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑁 ∈ ℤ)
3 simp2 1001 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝐾 ∈ ℤ)
42, 3zsubcld 9500 . 2 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁𝐾) ∈ ℤ)
5 simp3 1002 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑁 ∈ (ℤ‘(𝑀 + 𝐾)))
6 simp1 1000 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑀 ∈ ℤ)
76, 3zaddcld 9499 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑀 + 𝐾) ∈ ℤ)
8 eluz1 9652 . . . . . 6 ((𝑀 + 𝐾) ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁)))
97, 8syl 14 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁)))
105, 9mpbid 147 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁))
1110simprd 114 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑀 + 𝐾) ≤ 𝑁)
126zred 9495 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑀 ∈ ℝ)
133zred 9495 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝐾 ∈ ℝ)
142zred 9495 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑁 ∈ ℝ)
15 leaddsub 8511 . . . 4 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
1612, 13, 14, 15syl3anc 1250 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
1711, 16mpbid 147 . 2 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → 𝑀 ≤ (𝑁𝐾))
18 eluz1 9652 . . 3 (𝑀 ∈ ℤ → ((𝑁𝐾) ∈ (ℤ𝑀) ↔ ((𝑁𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁𝐾))))
196, 18syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑁𝐾) ∈ (ℤ𝑀) ↔ ((𝑁𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁𝐾))))
204, 17, 19mpbir2and 947 1 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁𝐾) ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  cr 7924   + caddc 7928  cle 8108  cmin 8243  cz 9372  cuz 9648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649
This theorem is referenced by:  fzoss2  10296  shftuz  11128  climshftlemg  11613  isumshft  11801
  Copyright terms: Public domain W3C validator