![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzsub | GIF version |
Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
eluzsub | ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9532 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → 𝑁 ∈ ℤ) | |
2 | 1 | 3ad2ant3 1020 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑁 ∈ ℤ) |
3 | simp2 998 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝐾 ∈ ℤ) | |
4 | 2, 3 | zsubcld 9375 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ ℤ) |
5 | simp3 999 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) | |
6 | simp1 997 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑀 ∈ ℤ) | |
7 | 6, 3 | zaddcld 9374 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑀 + 𝐾) ∈ ℤ) |
8 | eluz1 9527 | . . . . . 6 ⊢ ((𝑀 + 𝐾) ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁))) | |
9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁))) |
10 | 5, 9 | mpbid 147 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁)) |
11 | 10 | simprd 114 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑀 + 𝐾) ≤ 𝑁) |
12 | 6 | zred 9370 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑀 ∈ ℝ) |
13 | 3 | zred 9370 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝐾 ∈ ℝ) |
14 | 2 | zred 9370 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑁 ∈ ℝ) |
15 | leaddsub 8390 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) | |
16 | 12, 13, 14, 15 | syl3anc 1238 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) |
17 | 11, 16 | mpbid 147 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑀 ≤ (𝑁 − 𝐾)) |
18 | eluz1 9527 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ ((𝑁 − 𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 𝐾)))) | |
19 | 6, 18 | syl 14 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ ((𝑁 − 𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 𝐾)))) |
20 | 4, 17, 19 | mpbir2and 944 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 class class class wbr 4002 ‘cfv 5214 (class class class)co 5871 ℝcr 7806 + caddc 7810 ≤ cle 7988 − cmin 8123 ℤcz 9248 ℤ≥cuz 9523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-cnex 7898 ax-resscn 7899 ax-1cn 7900 ax-1re 7901 ax-icn 7902 ax-addcl 7903 ax-addrcl 7904 ax-mulcl 7905 ax-addcom 7907 ax-addass 7909 ax-distr 7911 ax-i2m1 7912 ax-0lt1 7913 ax-0id 7915 ax-rnegex 7916 ax-cnre 7918 ax-pre-ltirr 7919 ax-pre-ltwlin 7920 ax-pre-lttrn 7921 ax-pre-ltadd 7923 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5176 df-fun 5216 df-fn 5217 df-f 5218 df-fv 5222 df-riota 5827 df-ov 5874 df-oprab 5875 df-mpo 5876 df-pnf 7989 df-mnf 7990 df-xr 7991 df-ltxr 7992 df-le 7993 df-sub 8125 df-neg 8126 df-inn 8915 df-n0 9172 df-z 9249 df-uz 9524 |
This theorem is referenced by: fzoss2 10166 shftuz 10818 climshftlemg 11302 isumshft 11490 |
Copyright terms: Public domain | W3C validator |