Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzsub | GIF version |
Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
eluzsub | ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9467 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → 𝑁 ∈ ℤ) | |
2 | 1 | 3ad2ant3 1009 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑁 ∈ ℤ) |
3 | simp2 987 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝐾 ∈ ℤ) | |
4 | 2, 3 | zsubcld 9310 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ ℤ) |
5 | simp3 988 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) | |
6 | simp1 986 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑀 ∈ ℤ) | |
7 | 6, 3 | zaddcld 9309 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑀 + 𝐾) ∈ ℤ) |
8 | eluz1 9462 | . . . . . 6 ⊢ ((𝑀 + 𝐾) ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁))) | |
9 | 7, 8 | syl 14 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁))) |
10 | 5, 9 | mpbid 146 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁)) |
11 | 10 | simprd 113 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑀 + 𝐾) ≤ 𝑁) |
12 | 6 | zred 9305 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑀 ∈ ℝ) |
13 | 3 | zred 9305 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝐾 ∈ ℝ) |
14 | 2 | zred 9305 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑁 ∈ ℝ) |
15 | leaddsub 8328 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) | |
16 | 12, 13, 14, 15 | syl3anc 1227 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) |
17 | 11, 16 | mpbid 146 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → 𝑀 ≤ (𝑁 − 𝐾)) |
18 | eluz1 9462 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ ((𝑁 − 𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 𝐾)))) | |
19 | 6, 18 | syl 14 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ ((𝑁 − 𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 𝐾)))) |
20 | 4, 17, 19 | mpbir2and 933 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 967 ∈ wcel 2135 class class class wbr 3977 ‘cfv 5183 (class class class)co 5837 ℝcr 7744 + caddc 7748 ≤ cle 7926 − cmin 8061 ℤcz 9183 ℤ≥cuz 9458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 |
This theorem is referenced by: fzoss2 10098 shftuz 10746 climshftlemg 11230 isumshft 11418 |
Copyright terms: Public domain | W3C validator |