ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcl2lemap GIF version

Theorem expcl2lemap 10467
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lemap.4 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lemap ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lemap
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 9205 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 10466 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 114 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 274 . . . 4 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 519 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sselid 3140 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simplr 520 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 # 0)
11 simprl 521 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1211recnd 7927 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
13 nnnn0 9121 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1413ad2antll 483 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
15 expineg2 10464 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
169, 10, 12, 14, 15syl22anc 1229 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
17 ssrab2 3227 . . . . . . . 8 {𝑧𝐹𝑧 # 0} ⊆ 𝐹
18 simpl 108 . . . . . . . . . 10 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 # 0))
19 breq1 3985 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0))
2019elrab 2882 . . . . . . . . . 10 (𝐴 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝐴𝐹𝐴 # 0))
2118, 20sylibr 133 . . . . . . . . 9 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ {𝑧𝐹𝑧 # 0})
2217, 2sstri 3151 . . . . . . . . . 10 {𝑧𝐹𝑧 # 0} ⊆ ℂ
2317sseli 3138 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → 𝑥𝐹)
2417sseli 3138 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → 𝑦𝐹)
2523, 24, 3syl2an 287 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ 𝐹)
26 breq1 3985 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
2726elrab 2882 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑥𝐹𝑥 # 0))
282sseli 3138 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2928anim1i 338 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 # 0) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
3027, 29sylbi 120 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
31 breq1 3985 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0))
3231elrab 2882 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑦𝐹𝑦 # 0))
332sseli 3138 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3433anim1i 338 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 # 0) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
3532, 34sylbi 120 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
36 mulap0 8551 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0)
3730, 35, 36syl2an 287 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) # 0)
38 breq1 3985 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0))
3938elrab 2882 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) # 0))
4025, 37, 39sylanbrc 414 . . . . . . . . . 10 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0})
41 1ap0 8488 . . . . . . . . . . 11 1 # 0
42 breq1 3985 . . . . . . . . . . . 12 (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0))
4342elrab 2882 . . . . . . . . . . 11 (1 ∈ {𝑧𝐹𝑧 # 0} ↔ (1 ∈ 𝐹 ∧ 1 # 0))
444, 41, 43mpbir2an 932 . . . . . . . . . 10 1 ∈ {𝑧𝐹𝑧 # 0}
4522, 40, 44expcllem 10466 . . . . . . . . 9 ((𝐴 ∈ {𝑧𝐹𝑧 # 0} ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4621, 14, 45syl2anc 409 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4717, 46sselid 3140 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
48 breq1 3985 . . . . . . . . . 10 (𝑧 = (𝐴↑-𝐵) → (𝑧 # 0 ↔ (𝐴↑-𝐵) # 0))
4948elrab 2882 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5046, 49sylib 121 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5150simprd 113 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) # 0)
52 breq1 3985 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 # 0 ↔ (𝐴↑-𝐵) # 0))
53 oveq2 5850 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
5453eleq1d 2235 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5552, 54imbi12d 233 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 # 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
56 expcl2lemap.4 . . . . . . . . 9 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
5756ex 114 . . . . . . . 8 (𝑥𝐹 → (𝑥 # 0 → (1 / 𝑥) ∈ 𝐹))
5855, 57vtoclga 2792 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5947, 51, 58sylc 62 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
6016, 59eqeltrd 2243 . . . . 5 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
6160ex 114 . . . 4 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
627, 61jaod 707 . . 3 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
631, 62syl5bi 151 . 2 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
64633impia 1190 1 ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3a 968   = wceq 1343  wcel 2136  {crab 2448  wss 3116   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   · cmul 7758  -cneg 8070   # cap 8479   / cdiv 8568  cn 8857  0cn0 9114  cz 9191  cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  rpexpcl  10474  reexpclzap  10475  qexpclz  10476  m1expcl2  10477  expclzaplem  10479  1exp  10484
  Copyright terms: Public domain W3C validator