ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcl2lemap GIF version

Theorem expcl2lemap 9802
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lemap.4 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lemap ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lemap
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 8658 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 9801 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 113 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 270 . . . 4 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 496 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sseldi 3008 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simplr 497 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 # 0)
11 simprl 498 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1211recnd 7417 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
13 nnnn0 8570 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1413ad2antll 475 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
15 expineg2 9799 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
169, 10, 12, 14, 15syl22anc 1171 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
17 ssrab2 3090 . . . . . . . 8 {𝑧𝐹𝑧 # 0} ⊆ 𝐹
18 simpl 107 . . . . . . . . . 10 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 # 0))
19 breq1 3814 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0))
2019elrab 2759 . . . . . . . . . 10 (𝐴 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝐴𝐹𝐴 # 0))
2118, 20sylibr 132 . . . . . . . . 9 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ {𝑧𝐹𝑧 # 0})
2217, 2sstri 3019 . . . . . . . . . 10 {𝑧𝐹𝑧 # 0} ⊆ ℂ
2317sseli 3006 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → 𝑥𝐹)
2417sseli 3006 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → 𝑦𝐹)
2523, 24, 3syl2an 283 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ 𝐹)
26 breq1 3814 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
2726elrab 2759 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑥𝐹𝑥 # 0))
282sseli 3006 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2928anim1i 333 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 # 0) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
3027, 29sylbi 119 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
31 breq1 3814 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0))
3231elrab 2759 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑦𝐹𝑦 # 0))
332sseli 3006 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3433anim1i 333 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 # 0) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
3532, 34sylbi 119 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
36 mulap0 8019 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0)
3730, 35, 36syl2an 283 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) # 0)
38 breq1 3814 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0))
3938elrab 2759 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) # 0))
4025, 37, 39sylanbrc 408 . . . . . . . . . 10 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0})
41 1ap0 7965 . . . . . . . . . . 11 1 # 0
42 breq1 3814 . . . . . . . . . . . 12 (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0))
4342elrab 2759 . . . . . . . . . . 11 (1 ∈ {𝑧𝐹𝑧 # 0} ↔ (1 ∈ 𝐹 ∧ 1 # 0))
444, 41, 43mpbir2an 884 . . . . . . . . . 10 1 ∈ {𝑧𝐹𝑧 # 0}
4522, 40, 44expcllem 9801 . . . . . . . . 9 ((𝐴 ∈ {𝑧𝐹𝑧 # 0} ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4621, 14, 45syl2anc 403 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4717, 46sseldi 3008 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
48 breq1 3814 . . . . . . . . . 10 (𝑧 = (𝐴↑-𝐵) → (𝑧 # 0 ↔ (𝐴↑-𝐵) # 0))
4948elrab 2759 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5046, 49sylib 120 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5150simprd 112 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) # 0)
52 breq1 3814 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 # 0 ↔ (𝐴↑-𝐵) # 0))
53 oveq2 5597 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
5453eleq1d 2151 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5552, 54imbi12d 232 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 # 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
56 expcl2lemap.4 . . . . . . . . 9 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
5756ex 113 . . . . . . . 8 (𝑥𝐹 → (𝑥 # 0 → (1 / 𝑥) ∈ 𝐹))
5855, 57vtoclga 2675 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5947, 51, 58sylc 61 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
6016, 59eqeltrd 2159 . . . . 5 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
6160ex 113 . . . 4 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
627, 61jaod 670 . . 3 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
631, 62syl5bi 150 . 2 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
64633impia 1136 1 ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 662  w3a 920   = wceq 1285  wcel 1434  {crab 2357  wss 2984   class class class wbr 3811  (class class class)co 5589  cc 7249  cr 7250  0cc0 7251  1c1 7252   · cmul 7256  -cneg 7555   # cap 7956   / cdiv 8035  cn 8314  0cn0 8563  cz 8644  cexp 9789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-mulrcl 7345  ax-addcom 7346  ax-mulcom 7347  ax-addass 7348  ax-mulass 7349  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-1rid 7353  ax-0id 7354  ax-rnegex 7355  ax-precex 7356  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-apti 7361  ax-pre-ltadd 7362  ax-pre-mulgt0 7363  ax-pre-mulext 7364
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-frec 6086  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-reap 7950  df-ap 7957  df-div 8036  df-inn 8315  df-n0 8564  df-z 8645  df-uz 8913  df-iseq 9739  df-iexp 9790
This theorem is referenced by:  rpexpcl  9809  reexpclzap  9810  qexpclz  9811  m1expcl2  9812  expclzaplem  9814  1exp  9819
  Copyright terms: Public domain W3C validator