ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcl2lemap GIF version

Theorem expcl2lemap 10660
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
expcl2lemap.4 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
Assertion
Ref Expression
expcl2lemap ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcl2lemap
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 9357 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)))
2 expcllem.1 . . . . . . 7 𝐹 ⊆ ℂ
3 expcllem.2 . . . . . . 7 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
4 expcllem.3 . . . . . . 7 1 ∈ 𝐹
52, 3, 4expcllem 10659 . . . . . 6 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
65ex 115 . . . . 5 (𝐴𝐹 → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
76adantr 276 . . . 4 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℕ0 → (𝐴𝐵) ∈ 𝐹))
8 simpll 527 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴𝐹)
92, 8sselid 3182 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ ℂ)
10 simplr 528 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 # 0)
11 simprl 529 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℝ)
1211recnd 8072 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐵 ∈ ℂ)
13 nnnn0 9273 . . . . . . . 8 (-𝐵 ∈ ℕ → -𝐵 ∈ ℕ0)
1413ad2antll 491 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → -𝐵 ∈ ℕ0)
15 expineg2 10657 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
169, 10, 12, 14, 15syl22anc 1250 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
17 ssrab2 3269 . . . . . . . 8 {𝑧𝐹𝑧 # 0} ⊆ 𝐹
18 simpl 109 . . . . . . . . . 10 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐹𝐴 # 0))
19 breq1 4037 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝑧 # 0 ↔ 𝐴 # 0))
2019elrab 2920 . . . . . . . . . 10 (𝐴 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝐴𝐹𝐴 # 0))
2118, 20sylibr 134 . . . . . . . . 9 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → 𝐴 ∈ {𝑧𝐹𝑧 # 0})
2217, 2sstri 3193 . . . . . . . . . 10 {𝑧𝐹𝑧 # 0} ⊆ ℂ
2317sseli 3180 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → 𝑥𝐹)
2417sseli 3180 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → 𝑦𝐹)
2523, 24, 3syl2an 289 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ 𝐹)
26 breq1 4037 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑧 # 0 ↔ 𝑥 # 0))
2726elrab 2920 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑥𝐹𝑥 # 0))
282sseli 3180 . . . . . . . . . . . . . 14 (𝑥𝐹𝑥 ∈ ℂ)
2928anim1i 340 . . . . . . . . . . . . 13 ((𝑥𝐹𝑥 # 0) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
3027, 29sylbi 121 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝐹𝑧 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
31 breq1 4037 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 # 0 ↔ 𝑦 # 0))
3231elrab 2920 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝐹𝑧 # 0} ↔ (𝑦𝐹𝑦 # 0))
332sseli 3180 . . . . . . . . . . . . . 14 (𝑦𝐹𝑦 ∈ ℂ)
3433anim1i 340 . . . . . . . . . . . . 13 ((𝑦𝐹𝑦 # 0) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
3532, 34sylbi 121 . . . . . . . . . . . 12 (𝑦 ∈ {𝑧𝐹𝑧 # 0} → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
36 mulap0 8698 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 # 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 # 0)) → (𝑥 · 𝑦) # 0)
3730, 35, 36syl2an 289 . . . . . . . . . . 11 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) # 0)
38 breq1 4037 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑦) → (𝑧 # 0 ↔ (𝑥 · 𝑦) # 0))
3938elrab 2920 . . . . . . . . . . 11 ((𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝑥 · 𝑦) ∈ 𝐹 ∧ (𝑥 · 𝑦) # 0))
4025, 37, 39sylanbrc 417 . . . . . . . . . 10 ((𝑥 ∈ {𝑧𝐹𝑧 # 0} ∧ 𝑦 ∈ {𝑧𝐹𝑧 # 0}) → (𝑥 · 𝑦) ∈ {𝑧𝐹𝑧 # 0})
41 1ap0 8634 . . . . . . . . . . 11 1 # 0
42 breq1 4037 . . . . . . . . . . . 12 (𝑧 = 1 → (𝑧 # 0 ↔ 1 # 0))
4342elrab 2920 . . . . . . . . . . 11 (1 ∈ {𝑧𝐹𝑧 # 0} ↔ (1 ∈ 𝐹 ∧ 1 # 0))
444, 41, 43mpbir2an 944 . . . . . . . . . 10 1 ∈ {𝑧𝐹𝑧 # 0}
4522, 40, 44expcllem 10659 . . . . . . . . 9 ((𝐴 ∈ {𝑧𝐹𝑧 # 0} ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4621, 14, 45syl2anc 411 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0})
4717, 46sselid 3182 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) ∈ 𝐹)
48 breq1 4037 . . . . . . . . . 10 (𝑧 = (𝐴↑-𝐵) → (𝑧 # 0 ↔ (𝐴↑-𝐵) # 0))
4948elrab 2920 . . . . . . . . 9 ((𝐴↑-𝐵) ∈ {𝑧𝐹𝑧 # 0} ↔ ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5046, 49sylib 122 . . . . . . . 8 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → ((𝐴↑-𝐵) ∈ 𝐹 ∧ (𝐴↑-𝐵) # 0))
5150simprd 114 . . . . . . 7 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴↑-𝐵) # 0)
52 breq1 4037 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → (𝑥 # 0 ↔ (𝐴↑-𝐵) # 0))
53 oveq2 5933 . . . . . . . . . 10 (𝑥 = (𝐴↑-𝐵) → (1 / 𝑥) = (1 / (𝐴↑-𝐵)))
5453eleq1d 2265 . . . . . . . . 9 (𝑥 = (𝐴↑-𝐵) → ((1 / 𝑥) ∈ 𝐹 ↔ (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5552, 54imbi12d 234 . . . . . . . 8 (𝑥 = (𝐴↑-𝐵) → ((𝑥 # 0 → (1 / 𝑥) ∈ 𝐹) ↔ ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹)))
56 expcl2lemap.4 . . . . . . . . 9 ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)
5756ex 115 . . . . . . . 8 (𝑥𝐹 → (𝑥 # 0 → (1 / 𝑥) ∈ 𝐹))
5855, 57vtoclga 2830 . . . . . . 7 ((𝐴↑-𝐵) ∈ 𝐹 → ((𝐴↑-𝐵) # 0 → (1 / (𝐴↑-𝐵)) ∈ 𝐹))
5947, 51, 58sylc 62 . . . . . 6 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (1 / (𝐴↑-𝐵)) ∈ 𝐹)
6016, 59eqeltrd 2273 . . . . 5 (((𝐴𝐹𝐴 # 0) ∧ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹)
6160ex 115 . . . 4 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹))
627, 61jaod 718 . . 3 ((𝐴𝐹𝐴 # 0) → ((𝐵 ∈ ℕ0 ∨ (𝐵 ∈ ℝ ∧ -𝐵 ∈ ℕ)) → (𝐴𝐵) ∈ 𝐹))
631, 62biimtrid 152 . 2 ((𝐴𝐹𝐴 # 0) → (𝐵 ∈ ℤ → (𝐴𝐵) ∈ 𝐹))
64633impia 1202 1 ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2167  {crab 2479  wss 3157   class class class wbr 4034  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   · cmul 7901  -cneg 8215   # cap 8625   / cdiv 8716  cn 9007  0cn0 9266  cz 9343  cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  rpexpcl  10667  reexpclzap  10668  qexpclz  10669  m1expcl2  10670  expclzaplem  10672  1exp  10677
  Copyright terms: Public domain W3C validator