Proof of Theorem absexpzap
| Step | Hyp | Ref
 | Expression | 
| 1 |   | elznn0nn 9340 | 
. 2
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈
ℕ))) | 
| 2 |   | absexp 11244 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | 
| 3 | 2 | ex 115 | 
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑁 ∈ ℕ0
→ (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) | 
| 4 | 3 | adantr 276 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℕ0 →
(abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) | 
| 5 |   | 1cnd 8042 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 1 ∈
ℂ) | 
| 6 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ) | 
| 7 |   | nnnn0 9256 | 
. . . . . . . . . 10
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℕ0) | 
| 8 | 7 | ad2antll 491 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ0) | 
| 9 | 6, 8 | expcld 10765 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ) | 
| 10 |   | simplr 528 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0) | 
| 11 |   | nnz 9345 | 
. . . . . . . . . 10
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℤ) | 
| 12 | 11 | ad2antll 491 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ) | 
| 13 | 6, 10, 12 | expap0d 10771 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) # 0) | 
| 14 |   | absdivap 11235 | 
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ (𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0) → (abs‘(1 / (𝐴↑-𝑁))) = ((abs‘1) / (abs‘(𝐴↑-𝑁)))) | 
| 15 | 5, 9, 13, 14 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(1 /
(𝐴↑-𝑁))) = ((abs‘1) / (abs‘(𝐴↑-𝑁)))) | 
| 16 |   | abs1 11237 | 
. . . . . . . . 9
⊢
(abs‘1) = 1 | 
| 17 | 16 | oveq1i 5932 | 
. . . . . . . 8
⊢
((abs‘1) / (abs‘(𝐴↑-𝑁))) = (1 / (abs‘(𝐴↑-𝑁))) | 
| 18 |   | absexp 11244 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0)
→ (abs‘(𝐴↑-𝑁)) = ((abs‘𝐴)↑-𝑁)) | 
| 19 | 6, 8, 18 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴↑-𝑁)) = ((abs‘𝐴)↑-𝑁)) | 
| 20 | 19 | oveq2d 5938 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 /
(abs‘(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁))) | 
| 21 | 17, 20 | eqtrid 2241 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘1) /
(abs‘(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁))) | 
| 22 | 15, 21 | eqtrd 2229 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(1 /
(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁))) | 
| 23 |   | simprl 529 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ) | 
| 24 | 23 | recnd 8055 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ) | 
| 25 |   | expineg2 10640 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | 
| 26 | 6, 10, 24, 8, 25 | syl22anc 1250 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | 
| 27 | 26 | fveq2d 5562 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴↑𝑁)) = (abs‘(1 / (𝐴↑-𝑁)))) | 
| 28 |   | abscl 11216 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) | 
| 29 | 28 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) ∈
ℝ) | 
| 30 | 29 | recnd 8055 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) ∈
ℂ) | 
| 31 |   | abs00ap 11227 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) # 0 ↔
𝐴 # 0)) | 
| 32 | 31 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘𝐴) # 0 ↔ 𝐴 # 0)) | 
| 33 | 10, 32 | mpbird 167 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) # 0) | 
| 34 |   | expineg2 10640 | 
. . . . . . 7
⊢
((((abs‘𝐴)
∈ ℂ ∧ (abs‘𝐴) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) →
((abs‘𝐴)↑𝑁) = (1 / ((abs‘𝐴)↑-𝑁))) | 
| 35 | 30, 33, 24, 8, 34 | syl22anc 1250 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘𝐴)↑𝑁) = (1 / ((abs‘𝐴)↑-𝑁))) | 
| 36 | 22, 27, 35 | 3eqtr4d 2239 | 
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | 
| 37 | 36 | ex 115 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) | 
| 38 | 4, 37 | jaod 718 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) →
(abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁))) | 
| 39 | 38 | 3impia 1202 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) →
(abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) | 
| 40 | 1, 39 | syl3an3b 1287 | 
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |