ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi GIF version

Theorem 4sqlemffi 12638
Description: Lemma for 4sq 12652. ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n (𝜑𝑁 ∈ ℕ)
4sqlemafi.p (𝜑𝑃 ∈ ℕ)
4sqlemafi.a 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlemffi.f 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlemffi (𝜑 → ran 𝐹 ∈ Fin)
Distinct variable groups:   𝑚,𝑁,𝑢   𝑃,𝑚,𝑢   𝜑,𝑚,𝑢   𝑣,𝐴   𝑣,𝑃   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑢,𝑚)   𝐹(𝑣,𝑢,𝑚)   𝑁(𝑣)

Proof of Theorem 4sqlemffi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
21funmpt2 5307 . . 3 Fun 𝐹
3 funrel 5285 . . 3 (Fun 𝐹 → Rel 𝐹)
42, 3ax-mp 5 . 2 Rel 𝐹
5 4sqlemafi.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
65nnzd 9476 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
7 peano2zm 9392 . . . . . . . . 9 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
86, 7syl 14 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℤ)
98adantr 276 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑃 − 1) ∈ ℤ)
10 4sqlemafi.a . . . . . . . . 9 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
11 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃))
12 elfzelz 10129 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
1312adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ)
14 zsqcl 10736 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
1513, 14syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑚↑2) ∈ ℤ)
165adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
1715, 16zmodcld 10471 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0)
1817nn0zd 9475 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
1918adantr 276 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
2011, 19eqeltrd 2281 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ)
2120rexlimdva2 2625 . . . . . . . . . 10 (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ))
2221abssdv 3266 . . . . . . . . 9 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ)
2310, 22eqsstrid 3238 . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
2423sselda 3192 . . . . . . 7 ((𝜑𝑣𝐴) → 𝑣 ∈ ℤ)
259, 24zsubcld 9482 . . . . . 6 ((𝜑𝑣𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ)
2625ralrimiva 2578 . . . . 5 (𝜑 → ∀𝑣𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ)
278zcnd 9478 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℂ)
2827ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → (𝑃 − 1) ∈ ℂ)
2924adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑣 ∈ ℤ)
3029adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℤ)
3130zcnd 9478 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℂ)
3223adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝐴 ⊆ ℤ)
33 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥𝐴)
3432, 33sseldd 3193 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥 ∈ ℤ)
3534zcnd 9478 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥 ∈ ℂ)
3635adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑥 ∈ ℂ)
37 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥))
3828, 31, 36, 37subcand 8406 . . . . . . 7 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 = 𝑥)
3938ex 115 . . . . . 6 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))
4039ralrimivva 2587 . . . . 5 (𝜑 → ∀𝑣𝐴𝑥𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))
41 oveq2 5942 . . . . . 6 (𝑣 = 𝑥 → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥))
421, 41f1mpt 5830 . . . . 5 (𝐹:𝐴1-1→ℤ ↔ (∀𝑣𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ ∧ ∀𝑣𝐴𝑥𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥)))
4326, 40, 42sylanbrc 417 . . . 4 (𝜑𝐹:𝐴1-1→ℤ)
44 df-f1 5273 . . . 4 (𝐹:𝐴1-1→ℤ ↔ (𝐹:𝐴⟶ℤ ∧ Fun 𝐹))
4543, 44sylib 122 . . 3 (𝜑 → (𝐹:𝐴⟶ℤ ∧ Fun 𝐹))
4645simprd 114 . 2 (𝜑 → Fun 𝐹)
471, 25dmmptd 5400 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
48 4sqlemafi.n . . . . 5 (𝜑𝑁 ∈ ℕ)
4948, 5, 104sqlemafi 12637 . . . 4 (𝜑𝐴 ∈ Fin)
5047, 49eqeltrd 2281 . . 3 (𝜑 → dom 𝐹 ∈ Fin)
51 fundmfibi 7022 . . . 4 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
522, 51ax-mp 5 . . 3 (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)
5350, 52sylibr 134 . 2 (𝜑𝐹 ∈ Fin)
54 funrnfi 7026 . 2 ((Rel 𝐹 ∧ Fun 𝐹𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
554, 46, 53, 54mp3an2i 1354 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  {cab 2190  wral 2483  wrex 2484  wss 3165  cmpt 4104  ccnv 4672  dom cdm 4673  ran crn 4674  Rel wrel 4678  Fun wfun 5262  wf 5264  1-1wf1 5265  (class class class)co 5934  Fincfn 6817  cc 7905  0cc0 7907  1c1 7908  cmin 8225  cn 9018  2c2 9069  cz 9354  ...cfz 10112   mod cmo 10448  cexp 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-er 6610  df-en 6818  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665
This theorem is referenced by:  4sqlem11  12643
  Copyright terms: Public domain W3C validator