Step | Hyp | Ref
| Expression |
1 | | 4sqlemffi.f |
. . . 4
⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) |
2 | 1 | funmpt2 5274 |
. . 3
⊢ Fun 𝐹 |
3 | | funrel 5252 |
. . 3
⊢ (Fun
𝐹 → Rel 𝐹) |
4 | 2, 3 | ax-mp 5 |
. 2
⊢ Rel 𝐹 |
5 | | 4sqlemafi.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℕ) |
6 | 5 | nnzd 9405 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℤ) |
7 | | peano2zm 9322 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
8 | 6, 7 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) |
9 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑃 − 1) ∈ ℤ) |
10 | | 4sqlemafi.a |
. . . . . . . . 9
⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
11 | | simpr 110 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃)) |
12 | | elfzelz 10057 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ) |
13 | 12 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ) |
14 | | zsqcl 10625 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈
ℤ) |
15 | 13, 14 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑚↑2) ∈ ℤ) |
16 | 5 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → 𝑃 ∈ ℕ) |
17 | 15, 16 | zmodcld 10378 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈
ℕ0) |
18 | 17 | nn0zd 9404 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℤ) |
19 | 18 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ) |
20 | 11, 19 | eqeltrd 2266 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ) |
21 | 20 | rexlimdva2 2610 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ)) |
22 | 21 | abssdv 3244 |
. . . . . . . . 9
⊢ (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ) |
23 | 10, 22 | eqsstrid 3216 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
24 | 23 | sselda 3170 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℤ) |
25 | 9, 24 | zsubcld 9411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ) |
26 | 25 | ralrimiva 2563 |
. . . . 5
⊢ (𝜑 → ∀𝑣 ∈ 𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ) |
27 | 8 | zcnd 9407 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 − 1) ∈ ℂ) |
28 | 27 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → (𝑃 − 1) ∈ ℂ) |
29 | 24 | adantrr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → 𝑣 ∈ ℤ) |
30 | 29 | adantr 276 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℤ) |
31 | 30 | zcnd 9407 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℂ) |
32 | 23 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → 𝐴 ⊆ ℤ) |
33 | | simprr 531 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
34 | 32, 33 | sseldd 3171 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ ℤ) |
35 | 34 | zcnd 9407 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ ℂ) |
36 | 35 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑥 ∈ ℂ) |
37 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) |
38 | 28, 31, 36, 37 | subcand 8340 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 = 𝑥) |
39 | 38 | ex 115 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥)) |
40 | 39 | ralrimivva 2572 |
. . . . 5
⊢ (𝜑 → ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥)) |
41 | | oveq2 5905 |
. . . . . 6
⊢ (𝑣 = 𝑥 → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) |
42 | 1, 41 | f1mpt 5793 |
. . . . 5
⊢ (𝐹:𝐴–1-1→ℤ ↔ (∀𝑣 ∈ 𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ ∧ ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))) |
43 | 26, 40, 42 | sylanbrc 417 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴–1-1→ℤ) |
44 | | df-f1 5240 |
. . . 4
⊢ (𝐹:𝐴–1-1→ℤ ↔ (𝐹:𝐴⟶ℤ ∧ Fun ◡𝐹)) |
45 | 43, 44 | sylib 122 |
. . 3
⊢ (𝜑 → (𝐹:𝐴⟶ℤ ∧ Fun ◡𝐹)) |
46 | 45 | simprd 114 |
. 2
⊢ (𝜑 → Fun ◡𝐹) |
47 | 1, 25 | dmmptd 5365 |
. . . 4
⊢ (𝜑 → dom 𝐹 = 𝐴) |
48 | | 4sqlemafi.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
49 | 48, 5, 10 | 4sqlemafi 12430 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Fin) |
50 | 47, 49 | eqeltrd 2266 |
. . 3
⊢ (𝜑 → dom 𝐹 ∈ Fin) |
51 | | fundmfibi 6969 |
. . . 4
⊢ (Fun
𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
52 | 2, 51 | ax-mp 5 |
. . 3
⊢ (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin) |
53 | 50, 52 | sylibr 134 |
. 2
⊢ (𝜑 → 𝐹 ∈ Fin) |
54 | | funrnfi 6972 |
. 2
⊢ ((Rel
𝐹 ∧ Fun ◡𝐹 ∧ 𝐹 ∈ Fin) → ran 𝐹 ∈ Fin) |
55 | 4, 46, 53, 54 | mp3an2i 1353 |
1
⊢ (𝜑 → ran 𝐹 ∈ Fin) |