ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi GIF version

Theorem 4sqlemffi 12914
Description: Lemma for 4sq 12928. ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n (𝜑𝑁 ∈ ℕ)
4sqlemafi.p (𝜑𝑃 ∈ ℕ)
4sqlemafi.a 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlemffi.f 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlemffi (𝜑 → ran 𝐹 ∈ Fin)
Distinct variable groups:   𝑚,𝑁,𝑢   𝑃,𝑚,𝑢   𝜑,𝑚,𝑢   𝑣,𝐴   𝑣,𝑃   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑢,𝑚)   𝐹(𝑣,𝑢,𝑚)   𝑁(𝑣)

Proof of Theorem 4sqlemffi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
21funmpt2 5356 . . 3 Fun 𝐹
3 funrel 5334 . . 3 (Fun 𝐹 → Rel 𝐹)
42, 3ax-mp 5 . 2 Rel 𝐹
5 4sqlemafi.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
65nnzd 9564 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
7 peano2zm 9480 . . . . . . . . 9 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
86, 7syl 14 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℤ)
98adantr 276 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑃 − 1) ∈ ℤ)
10 4sqlemafi.a . . . . . . . . 9 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
11 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃))
12 elfzelz 10217 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
1312adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ)
14 zsqcl 10827 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
1513, 14syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑚↑2) ∈ ℤ)
165adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
1715, 16zmodcld 10562 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0)
1817nn0zd 9563 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
1918adantr 276 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
2011, 19eqeltrd 2306 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ)
2120rexlimdva2 2651 . . . . . . . . . 10 (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ))
2221abssdv 3298 . . . . . . . . 9 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ)
2310, 22eqsstrid 3270 . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
2423sselda 3224 . . . . . . 7 ((𝜑𝑣𝐴) → 𝑣 ∈ ℤ)
259, 24zsubcld 9570 . . . . . 6 ((𝜑𝑣𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ)
2625ralrimiva 2603 . . . . 5 (𝜑 → ∀𝑣𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ)
278zcnd 9566 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℂ)
2827ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → (𝑃 − 1) ∈ ℂ)
2924adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑣 ∈ ℤ)
3029adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℤ)
3130zcnd 9566 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℂ)
3223adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝐴 ⊆ ℤ)
33 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥𝐴)
3432, 33sseldd 3225 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥 ∈ ℤ)
3534zcnd 9566 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥 ∈ ℂ)
3635adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑥 ∈ ℂ)
37 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥))
3828, 31, 36, 37subcand 8494 . . . . . . 7 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 = 𝑥)
3938ex 115 . . . . . 6 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))
4039ralrimivva 2612 . . . . 5 (𝜑 → ∀𝑣𝐴𝑥𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))
41 oveq2 6008 . . . . . 6 (𝑣 = 𝑥 → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥))
421, 41f1mpt 5894 . . . . 5 (𝐹:𝐴1-1→ℤ ↔ (∀𝑣𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ ∧ ∀𝑣𝐴𝑥𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥)))
4326, 40, 42sylanbrc 417 . . . 4 (𝜑𝐹:𝐴1-1→ℤ)
44 df-f1 5322 . . . 4 (𝐹:𝐴1-1→ℤ ↔ (𝐹:𝐴⟶ℤ ∧ Fun 𝐹))
4543, 44sylib 122 . . 3 (𝜑 → (𝐹:𝐴⟶ℤ ∧ Fun 𝐹))
4645simprd 114 . 2 (𝜑 → Fun 𝐹)
471, 25dmmptd 5453 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
48 4sqlemafi.n . . . . 5 (𝜑𝑁 ∈ ℕ)
4948, 5, 104sqlemafi 12913 . . . 4 (𝜑𝐴 ∈ Fin)
5047, 49eqeltrd 2306 . . 3 (𝜑 → dom 𝐹 ∈ Fin)
51 fundmfibi 7101 . . . 4 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
522, 51ax-mp 5 . . 3 (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)
5350, 52sylibr 134 . 2 (𝜑𝐹 ∈ Fin)
54 funrnfi 7105 . 2 ((Rel 𝐹 ∧ Fun 𝐹𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
554, 46, 53, 54mp3an2i 1376 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  wss 3197  cmpt 4144  ccnv 4717  dom cdm 4718  ran crn 4719  Rel wrel 4723  Fun wfun 5311  wf 5313  1-1wf1 5314  (class class class)co 6000  Fincfn 6885  cc 7993  0cc0 7995  1c1 7996  cmin 8313  cn 9106  2c2 9157  cz 9442  ...cfz 10200   mod cmo 10539  cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  4sqlem11  12919
  Copyright terms: Public domain W3C validator