ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi GIF version

Theorem 4sqlemffi 12534
Description: Lemma for 4sq 12548. ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n (𝜑𝑁 ∈ ℕ)
4sqlemafi.p (𝜑𝑃 ∈ ℕ)
4sqlemafi.a 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlemffi.f 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlemffi (𝜑 → ran 𝐹 ∈ Fin)
Distinct variable groups:   𝑚,𝑁,𝑢   𝑃,𝑚,𝑢   𝜑,𝑚,𝑢   𝑣,𝐴   𝑣,𝑃   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑢,𝑚)   𝐹(𝑣,𝑢,𝑚)   𝑁(𝑣)

Proof of Theorem 4sqlemffi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
21funmpt2 5293 . . 3 Fun 𝐹
3 funrel 5271 . . 3 (Fun 𝐹 → Rel 𝐹)
42, 3ax-mp 5 . 2 Rel 𝐹
5 4sqlemafi.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
65nnzd 9438 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
7 peano2zm 9355 . . . . . . . . 9 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
86, 7syl 14 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℤ)
98adantr 276 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑃 − 1) ∈ ℤ)
10 4sqlemafi.a . . . . . . . . 9 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
11 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃))
12 elfzelz 10091 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
1312adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ)
14 zsqcl 10681 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
1513, 14syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑚↑2) ∈ ℤ)
165adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
1715, 16zmodcld 10416 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0)
1817nn0zd 9437 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
1918adantr 276 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
2011, 19eqeltrd 2270 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ)
2120rexlimdva2 2614 . . . . . . . . . 10 (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ))
2221abssdv 3253 . . . . . . . . 9 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ)
2310, 22eqsstrid 3225 . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
2423sselda 3179 . . . . . . 7 ((𝜑𝑣𝐴) → 𝑣 ∈ ℤ)
259, 24zsubcld 9444 . . . . . 6 ((𝜑𝑣𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ)
2625ralrimiva 2567 . . . . 5 (𝜑 → ∀𝑣𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ)
278zcnd 9440 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℂ)
2827ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → (𝑃 − 1) ∈ ℂ)
2924adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑣 ∈ ℤ)
3029adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℤ)
3130zcnd 9440 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℂ)
3223adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝐴 ⊆ ℤ)
33 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥𝐴)
3432, 33sseldd 3180 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥 ∈ ℤ)
3534zcnd 9440 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥 ∈ ℂ)
3635adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑥 ∈ ℂ)
37 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥))
3828, 31, 36, 37subcand 8371 . . . . . . 7 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 = 𝑥)
3938ex 115 . . . . . 6 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))
4039ralrimivva 2576 . . . . 5 (𝜑 → ∀𝑣𝐴𝑥𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))
41 oveq2 5926 . . . . . 6 (𝑣 = 𝑥 → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥))
421, 41f1mpt 5814 . . . . 5 (𝐹:𝐴1-1→ℤ ↔ (∀𝑣𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ ∧ ∀𝑣𝐴𝑥𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥)))
4326, 40, 42sylanbrc 417 . . . 4 (𝜑𝐹:𝐴1-1→ℤ)
44 df-f1 5259 . . . 4 (𝐹:𝐴1-1→ℤ ↔ (𝐹:𝐴⟶ℤ ∧ Fun 𝐹))
4543, 44sylib 122 . . 3 (𝜑 → (𝐹:𝐴⟶ℤ ∧ Fun 𝐹))
4645simprd 114 . 2 (𝜑 → Fun 𝐹)
471, 25dmmptd 5384 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
48 4sqlemafi.n . . . . 5 (𝜑𝑁 ∈ ℕ)
4948, 5, 104sqlemafi 12533 . . . 4 (𝜑𝐴 ∈ Fin)
5047, 49eqeltrd 2270 . . 3 (𝜑 → dom 𝐹 ∈ Fin)
51 fundmfibi 6997 . . . 4 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
522, 51ax-mp 5 . . 3 (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)
5350, 52sylibr 134 . 2 (𝜑𝐹 ∈ Fin)
54 funrnfi 7001 . 2 ((Rel 𝐹 ∧ Fun 𝐹𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
554, 46, 53, 54mp3an2i 1353 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  wss 3153  cmpt 4090  ccnv 4658  dom cdm 4659  ran crn 4660  Rel wrel 4664  Fun wfun 5248  wf 5250  1-1wf1 5251  (class class class)co 5918  Fincfn 6794  cc 7870  0cc0 7872  1c1 7873  cmin 8190  cn 8982  2c2 9033  cz 9317  ...cfz 10074   mod cmo 10393  cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  4sqlem11  12539
  Copyright terms: Public domain W3C validator