ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi GIF version

Theorem 4sqlemffi 12565
Description: Lemma for 4sq 12579. ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n (𝜑𝑁 ∈ ℕ)
4sqlemafi.p (𝜑𝑃 ∈ ℕ)
4sqlemafi.a 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlemffi.f 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlemffi (𝜑 → ran 𝐹 ∈ Fin)
Distinct variable groups:   𝑚,𝑁,𝑢   𝑃,𝑚,𝑢   𝜑,𝑚,𝑢   𝑣,𝐴   𝑣,𝑃   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑢,𝑚)   𝐹(𝑣,𝑢,𝑚)   𝑁(𝑣)

Proof of Theorem 4sqlemffi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
21funmpt2 5297 . . 3 Fun 𝐹
3 funrel 5275 . . 3 (Fun 𝐹 → Rel 𝐹)
42, 3ax-mp 5 . 2 Rel 𝐹
5 4sqlemafi.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
65nnzd 9447 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
7 peano2zm 9364 . . . . . . . . 9 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
86, 7syl 14 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℤ)
98adantr 276 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑃 − 1) ∈ ℤ)
10 4sqlemafi.a . . . . . . . . 9 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
11 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃))
12 elfzelz 10100 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
1312adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ)
14 zsqcl 10702 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
1513, 14syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑚↑2) ∈ ℤ)
165adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
1715, 16zmodcld 10437 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0)
1817nn0zd 9446 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
1918adantr 276 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
2011, 19eqeltrd 2273 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ)
2120rexlimdva2 2617 . . . . . . . . . 10 (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ))
2221abssdv 3257 . . . . . . . . 9 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ)
2310, 22eqsstrid 3229 . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
2423sselda 3183 . . . . . . 7 ((𝜑𝑣𝐴) → 𝑣 ∈ ℤ)
259, 24zsubcld 9453 . . . . . 6 ((𝜑𝑣𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ)
2625ralrimiva 2570 . . . . 5 (𝜑 → ∀𝑣𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ)
278zcnd 9449 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℂ)
2827ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → (𝑃 − 1) ∈ ℂ)
2924adantrr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑣 ∈ ℤ)
3029adantr 276 . . . . . . . . 9 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℤ)
3130zcnd 9449 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 ∈ ℂ)
3223adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝐴 ⊆ ℤ)
33 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥𝐴)
3432, 33sseldd 3184 . . . . . . . . . 10 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥 ∈ ℤ)
3534zcnd 9449 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → 𝑥 ∈ ℂ)
3635adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑥 ∈ ℂ)
37 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥))
3828, 31, 36, 37subcand 8378 . . . . . . 7 (((𝜑 ∧ (𝑣𝐴𝑥𝐴)) ∧ ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥)) → 𝑣 = 𝑥)
3938ex 115 . . . . . 6 ((𝜑 ∧ (𝑣𝐴𝑥𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))
4039ralrimivva 2579 . . . . 5 (𝜑 → ∀𝑣𝐴𝑥𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥))
41 oveq2 5930 . . . . . 6 (𝑣 = 𝑥 → ((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥))
421, 41f1mpt 5818 . . . . 5 (𝐹:𝐴1-1→ℤ ↔ (∀𝑣𝐴 ((𝑃 − 1) − 𝑣) ∈ ℤ ∧ ∀𝑣𝐴𝑥𝐴 (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑥) → 𝑣 = 𝑥)))
4326, 40, 42sylanbrc 417 . . . 4 (𝜑𝐹:𝐴1-1→ℤ)
44 df-f1 5263 . . . 4 (𝐹:𝐴1-1→ℤ ↔ (𝐹:𝐴⟶ℤ ∧ Fun 𝐹))
4543, 44sylib 122 . . 3 (𝜑 → (𝐹:𝐴⟶ℤ ∧ Fun 𝐹))
4645simprd 114 . 2 (𝜑 → Fun 𝐹)
471, 25dmmptd 5388 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
48 4sqlemafi.n . . . . 5 (𝜑𝑁 ∈ ℕ)
4948, 5, 104sqlemafi 12564 . . . 4 (𝜑𝐴 ∈ Fin)
5047, 49eqeltrd 2273 . . 3 (𝜑 → dom 𝐹 ∈ Fin)
51 fundmfibi 7004 . . . 4 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
522, 51ax-mp 5 . . 3 (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)
5350, 52sylibr 134 . 2 (𝜑𝐹 ∈ Fin)
54 funrnfi 7008 . 2 ((Rel 𝐹 ∧ Fun 𝐹𝐹 ∈ Fin) → ran 𝐹 ∈ Fin)
554, 46, 53, 54mp3an2i 1353 1 (𝜑 → ran 𝐹 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  wss 3157  cmpt 4094  ccnv 4662  dom cdm 4663  ran crn 4664  Rel wrel 4668  Fun wfun 5252  wf 5254  1-1wf1 5255  (class class class)co 5922  Fincfn 6799  cc 7877  0cc0 7879  1c1 7880  cmin 8197  cn 8990  2c2 9041  cz 9326  ...cfz 10083   mod cmo 10414  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  4sqlem11  12570
  Copyright terms: Public domain W3C validator