| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcl | GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvf 13251 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 4 | 3 | ffvelcdmda 5700 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 Basecbs 12705 Grpcgrp 13204 invgcminusg 13205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9010 df-2 9068 df-ndx 12708 df-slot 12709 df-base 12711 df-plusg 12795 df-0g 12962 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-grp 13207 df-minusg 13208 |
| This theorem is referenced by: grpinvcld 13253 grprinv 13255 grpinvid1 13256 grpinvid2 13257 grplrinv 13261 grpressid 13265 grplcan 13266 grpasscan1 13267 grpasscan2 13268 grpinvinv 13271 grpinvcnv 13272 grpinvnzcl 13276 grpsubinv 13277 grplmulf1o 13278 grpinvssd 13281 grpinvadd 13282 grpsubf 13283 grpsubrcan 13285 grpinvsub 13286 grpinvval2 13287 grpsubeq0 13290 grpsubadd 13292 grpaddsubass 13294 grpnpcan 13296 dfgrp3m 13303 grplactcnv 13306 grpsubpropd2 13309 pwssub 13317 imasgrp 13319 ghmgrp 13326 mulgcl 13347 mulgaddcomlem 13353 mulginvcom 13355 mulginvinv 13356 mulgneg2 13364 subginv 13389 subginvcl 13391 issubg4m 13401 grpissubg 13402 subgintm 13406 0subg 13407 isnsg3 13415 nmzsubg 13418 eqger 13432 eqglact 13433 eqgcpbl 13436 qusgrp 13440 qusinv 13444 qussub 13445 ghminv 13458 ghmsub 13459 ghmrn 13465 ghmpreima 13474 ghmeql 13475 conjghm 13484 ablinvadd 13518 ablsub2inv 13519 ablsub4 13521 ablsubsub4 13527 invghm 13537 eqgabl 13538 ringnegl 13685 ringnegr 13686 ringmneg1 13687 ringmneg2 13688 ringm2neg 13689 ringsubdi 13690 ringsubdir 13691 dvdsrneg 13737 unitinvcl 13757 unitnegcl 13764 lmodvnegcl 13962 lmodvneg1 13964 lmodvsneg 13965 lmodsubvs 13977 lmodsubdi 13978 lmodsubdir 13979 lssvsubcl 14000 lssvnegcl 14010 lspsnneg 14054 psrlinv 14314 |
| Copyright terms: Public domain | W3C validator |