![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvcl | GIF version |
Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
3 | 1, 2 | grpinvf 13093 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
4 | 3 | ffvelcdmda 5681 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ‘cfv 5242 Basecbs 12592 Grpcgrp 13046 invgcminusg 13047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4140 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-cnex 7949 ax-resscn 7950 ax-1re 7952 ax-addrcl 7955 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-un 3153 df-in 3155 df-ss 3162 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-iun 3910 df-br 4026 df-opab 4087 df-mpt 4088 df-id 4318 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-f1 5247 df-fo 5248 df-f1o 5249 df-fv 5250 df-riota 5861 df-ov 5909 df-inn 8969 df-2 9027 df-ndx 12595 df-slot 12596 df-base 12598 df-plusg 12682 df-0g 12843 df-mgm 12913 df-sgrp 12959 df-mnd 12972 df-grp 13049 df-minusg 13050 |
This theorem is referenced by: grpinvcld 13095 grprinv 13097 grpinvid1 13098 grpinvid2 13099 grplrinv 13103 grpressid 13107 grplcan 13108 grpasscan1 13109 grpasscan2 13110 grpinvinv 13113 grpinvcnv 13114 grpinvnzcl 13118 grpsubinv 13119 grplmulf1o 13120 grpinvssd 13123 grpinvadd 13124 grpsubf 13125 grpsubrcan 13127 grpinvsub 13128 grpinvval2 13129 grpsubeq0 13132 grpsubadd 13134 grpaddsubass 13136 grpnpcan 13138 dfgrp3m 13145 grplactcnv 13148 grpsubpropd2 13151 imasgrp 13155 ghmgrp 13162 mulgcl 13183 mulgaddcomlem 13189 mulginvcom 13191 mulginvinv 13192 mulgneg2 13200 subginv 13224 subginvcl 13226 issubg4m 13236 grpissubg 13237 subgintm 13241 0subg 13242 isnsg3 13250 nmzsubg 13253 eqger 13267 eqglact 13268 eqgcpbl 13271 qusgrp 13275 qusinv 13279 qussub 13280 ghminv 13293 ghmsub 13294 ghmrn 13300 ghmpreima 13309 ghmeql 13310 conjghm 13319 ablinvadd 13353 ablsub2inv 13354 ablsub4 13356 ablsubsub4 13362 invghm 13372 eqgabl 13373 ringnegl 13511 ringnegr 13512 ringmneg1 13513 ringmneg2 13514 ringm2neg 13515 ringsubdi 13516 ringsubdir 13517 dvdsrneg 13563 unitinvcl 13583 unitnegcl 13590 lmodvnegcl 13788 lmodvneg1 13790 lmodvsneg 13791 lmodsubvs 13803 lmodsubdi 13804 lmodsubdir 13805 lssvsubcl 13826 lssvnegcl 13836 lspsnneg 13880 |
Copyright terms: Public domain | W3C validator |