| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcl | GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvf 13464 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 4 | 3 | ffvelcdmda 5733 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5285 Basecbs 12917 Grpcgrp 13417 invgcminusg 13418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-inn 9067 df-2 9125 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 |
| This theorem is referenced by: grpinvcld 13466 grprinv 13468 grpinvid1 13469 grpinvid2 13470 grplrinv 13474 grpressid 13478 grplcan 13479 grpasscan1 13480 grpasscan2 13481 grpinvinv 13484 grpinvcnv 13485 grpinvnzcl 13489 grpsubinv 13490 grplmulf1o 13491 grpinvssd 13494 grpinvadd 13495 grpsubf 13496 grpsubrcan 13498 grpinvsub 13499 grpinvval2 13500 grpsubeq0 13503 grpsubadd 13505 grpaddsubass 13507 grpnpcan 13509 dfgrp3m 13516 grplactcnv 13519 grpsubpropd2 13522 pwssub 13530 imasgrp 13532 ghmgrp 13539 mulgcl 13560 mulgaddcomlem 13566 mulginvcom 13568 mulginvinv 13569 mulgneg2 13577 subginv 13602 subginvcl 13604 issubg4m 13614 grpissubg 13615 subgintm 13619 0subg 13620 isnsg3 13628 nmzsubg 13631 eqger 13645 eqglact 13646 eqgcpbl 13649 qusgrp 13653 qusinv 13657 qussub 13658 ghminv 13671 ghmsub 13672 ghmrn 13678 ghmpreima 13687 ghmeql 13688 conjghm 13697 ablinvadd 13731 ablsub2inv 13732 ablsub4 13734 ablsubsub4 13740 invghm 13750 eqgabl 13751 ringnegl 13898 ringnegr 13899 ringmneg1 13900 ringmneg2 13901 ringm2neg 13902 ringsubdi 13903 ringsubdir 13904 dvdsrneg 13950 unitinvcl 13970 unitnegcl 13977 lmodvnegcl 14175 lmodvneg1 14177 lmodvsneg 14178 lmodsubvs 14190 lmodsubdi 14191 lmodsubdir 14192 lssvsubcl 14213 lssvnegcl 14223 lspsnneg 14267 psrlinv 14531 |
| Copyright terms: Public domain | W3C validator |