| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcl | GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvf 13575 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 4 | 3 | ffvelcdmda 5769 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 Basecbs 13027 Grpcgrp 13528 invgcminusg 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 |
| This theorem is referenced by: grpinvcld 13577 grprinv 13579 grpinvid1 13580 grpinvid2 13581 grplrinv 13585 grpressid 13589 grplcan 13590 grpasscan1 13591 grpasscan2 13592 grpinvinv 13595 grpinvcnv 13596 grpinvnzcl 13600 grpsubinv 13601 grplmulf1o 13602 grpinvssd 13605 grpinvadd 13606 grpsubf 13607 grpsubrcan 13609 grpinvsub 13610 grpinvval2 13611 grpsubeq0 13614 grpsubadd 13616 grpaddsubass 13618 grpnpcan 13620 dfgrp3m 13627 grplactcnv 13630 grpsubpropd2 13633 pwssub 13641 imasgrp 13643 ghmgrp 13650 mulgcl 13671 mulgaddcomlem 13677 mulginvcom 13679 mulginvinv 13680 mulgneg2 13688 subginv 13713 subginvcl 13715 issubg4m 13725 grpissubg 13726 subgintm 13730 0subg 13731 isnsg3 13739 nmzsubg 13742 eqger 13756 eqglact 13757 eqgcpbl 13760 qusgrp 13764 qusinv 13768 qussub 13769 ghminv 13782 ghmsub 13783 ghmrn 13789 ghmpreima 13798 ghmeql 13799 conjghm 13808 ablinvadd 13842 ablsub2inv 13843 ablsub4 13845 ablsubsub4 13851 invghm 13861 eqgabl 13862 ringnegl 14009 ringnegr 14010 ringmneg1 14011 ringmneg2 14012 ringm2neg 14013 ringsubdi 14014 ringsubdir 14015 dvdsrneg 14061 unitinvcl 14081 unitnegcl 14088 lmodvnegcl 14286 lmodvneg1 14288 lmodvsneg 14289 lmodsubvs 14301 lmodsubdi 14302 lmodsubdir 14303 lssvsubcl 14324 lssvnegcl 14334 lspsnneg 14378 psrlinv 14642 |
| Copyright terms: Public domain | W3C validator |