![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvcl | GIF version |
Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
3 | 1, 2 | grpinvf 12925 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
4 | 3 | ffvelcdmda 5653 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ‘cfv 5218 Basecbs 12464 Grpcgrp 12882 invgcminusg 12883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 df-minusg 12886 |
This theorem is referenced by: grprinv 12928 grpinvid1 12929 grpinvid2 12930 grplrinv 12932 grpressid 12936 grplcan 12937 grpasscan1 12938 grpasscan2 12939 grpinvinv 12942 grpinvcnv 12943 grpinvnzcl 12947 grpsubinv 12948 grplmulf1o 12949 grpinvssd 12952 grpinvadd 12953 grpsubf 12954 grpsubrcan 12956 grpinvsub 12957 grpinvval2 12958 grpsubeq0 12961 grpsubadd 12963 grpaddsubass 12965 grpnpcan 12967 dfgrp3m 12974 grplactcnv 12977 grpsubpropd2 12980 ghmgrp 12987 mulgcl 13005 mulgaddcomlem 13011 mulginvcom 13013 mulginvinv 13014 mulgneg2 13022 subginv 13046 subginvcl 13048 issubg4m 13058 grpissubg 13059 subgintm 13063 0subg 13064 isnsg3 13072 nmzsubg 13075 eqger 13088 eqglact 13089 eqgcpbl 13092 ablinvadd 13118 ablsub2inv 13119 ablsub4 13121 ablsubsub4 13127 ringnegl 13233 ringnegr 13234 ringmneg1 13235 ringmneg2 13236 ringm2neg 13237 ringsubdi 13238 ringsubdir 13239 dvdsrneg 13277 unitinvcl 13297 unitnegcl 13304 lmodvnegcl 13423 lmodvneg1 13425 lmodvsneg 13426 lmodsubvs 13438 lmodsubdi 13439 lmodsubdir 13440 lssvsubcl 13457 lssvnegcl 13468 |
Copyright terms: Public domain | W3C validator |