![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvcl | GIF version |
Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
3 | 1, 2 | grpinvf 13122 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
4 | 3 | ffvelcdmda 5694 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 Basecbs 12621 Grpcgrp 13075 invgcminusg 13076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-inn 8985 df-2 9043 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 |
This theorem is referenced by: grpinvcld 13124 grprinv 13126 grpinvid1 13127 grpinvid2 13128 grplrinv 13132 grpressid 13136 grplcan 13137 grpasscan1 13138 grpasscan2 13139 grpinvinv 13142 grpinvcnv 13143 grpinvnzcl 13147 grpsubinv 13148 grplmulf1o 13149 grpinvssd 13152 grpinvadd 13153 grpsubf 13154 grpsubrcan 13156 grpinvsub 13157 grpinvval2 13158 grpsubeq0 13161 grpsubadd 13163 grpaddsubass 13165 grpnpcan 13167 dfgrp3m 13174 grplactcnv 13177 grpsubpropd2 13180 imasgrp 13184 ghmgrp 13191 mulgcl 13212 mulgaddcomlem 13218 mulginvcom 13220 mulginvinv 13221 mulgneg2 13229 subginv 13254 subginvcl 13256 issubg4m 13266 grpissubg 13267 subgintm 13271 0subg 13272 isnsg3 13280 nmzsubg 13283 eqger 13297 eqglact 13298 eqgcpbl 13301 qusgrp 13305 qusinv 13309 qussub 13310 ghminv 13323 ghmsub 13324 ghmrn 13330 ghmpreima 13339 ghmeql 13340 conjghm 13349 ablinvadd 13383 ablsub2inv 13384 ablsub4 13386 ablsubsub4 13392 invghm 13402 eqgabl 13403 ringnegl 13550 ringnegr 13551 ringmneg1 13552 ringmneg2 13553 ringm2neg 13554 ringsubdi 13555 ringsubdir 13556 dvdsrneg 13602 unitinvcl 13622 unitnegcl 13629 lmodvnegcl 13827 lmodvneg1 13829 lmodvsneg 13830 lmodsubvs 13842 lmodsubdi 13843 lmodsubdir 13844 lssvsubcl 13865 lssvnegcl 13875 lspsnneg 13919 |
Copyright terms: Public domain | W3C validator |