| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcl | GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvf 13379 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 4 | 3 | ffvelcdmda 5715 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ‘cfv 5271 Basecbs 12832 Grpcgrp 13332 invgcminusg 13333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 |
| This theorem is referenced by: grpinvcld 13381 grprinv 13383 grpinvid1 13384 grpinvid2 13385 grplrinv 13389 grpressid 13393 grplcan 13394 grpasscan1 13395 grpasscan2 13396 grpinvinv 13399 grpinvcnv 13400 grpinvnzcl 13404 grpsubinv 13405 grplmulf1o 13406 grpinvssd 13409 grpinvadd 13410 grpsubf 13411 grpsubrcan 13413 grpinvsub 13414 grpinvval2 13415 grpsubeq0 13418 grpsubadd 13420 grpaddsubass 13422 grpnpcan 13424 dfgrp3m 13431 grplactcnv 13434 grpsubpropd2 13437 pwssub 13445 imasgrp 13447 ghmgrp 13454 mulgcl 13475 mulgaddcomlem 13481 mulginvcom 13483 mulginvinv 13484 mulgneg2 13492 subginv 13517 subginvcl 13519 issubg4m 13529 grpissubg 13530 subgintm 13534 0subg 13535 isnsg3 13543 nmzsubg 13546 eqger 13560 eqglact 13561 eqgcpbl 13564 qusgrp 13568 qusinv 13572 qussub 13573 ghminv 13586 ghmsub 13587 ghmrn 13593 ghmpreima 13602 ghmeql 13603 conjghm 13612 ablinvadd 13646 ablsub2inv 13647 ablsub4 13649 ablsubsub4 13655 invghm 13665 eqgabl 13666 ringnegl 13813 ringnegr 13814 ringmneg1 13815 ringmneg2 13816 ringm2neg 13817 ringsubdi 13818 ringsubdir 13819 dvdsrneg 13865 unitinvcl 13885 unitnegcl 13892 lmodvnegcl 14090 lmodvneg1 14092 lmodvsneg 14093 lmodsubvs 14105 lmodsubdi 14106 lmodsubdir 14107 lssvsubcl 14128 lssvnegcl 14138 lspsnneg 14182 psrlinv 14446 |
| Copyright terms: Public domain | W3C validator |