| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusgslid | GIF version | ||
| Description: Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.) |
| Ref | Expression |
|---|---|
| plusgslid | ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plusg 13109 | . 2 ⊢ +g = Slot 2 | |
| 2 | 2nn 9260 | . 2 ⊢ 2 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13043 | 1 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 ℕcn 9098 2c2 9149 ndxcnx 13015 Slot cslot 13017 +gcplusg 13096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fv 5322 df-ov 5997 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-plusg 13109 |
| This theorem is referenced by: ressplusgd 13148 rngplusgg 13156 srngplusgd 13167 lmodplusgd 13185 ipsaddgd 13197 topgrpplusgd 13217 prdsplusgfval 13303 imasex 13324 imasival 13325 imasbas 13326 imasplusg 13327 imasaddfn 13336 imasaddval 13337 imasaddf 13338 qusaddval 13354 qusaddf 13355 ismgm 13376 plusfvalg 13382 plusffng 13384 gsumpropd2 13412 gsumsplit1r 13417 gsumprval 13418 issgrp 13422 ismnddef 13437 gsumfzz 13514 gsumwsubmcl 13515 gsumwmhm 13517 gsumfzcl 13518 grppropstrg 13538 grpsubval 13565 mulgval 13645 mulgfng 13647 mulgnngsum 13650 mulg1 13652 mulgnnp1 13653 mulgnndir 13674 subgintm 13721 isnsg 13725 gsumfzreidx 13860 gsumfzsubmcl 13861 gsumfzmptfidmadd 13862 gsumfzconst 13864 gsumfzmhm 13866 fnmgp 13871 mgpvalg 13872 mgpplusgg 13873 mgpex 13874 mgpbasg 13875 mgpscag 13876 mgptsetg 13877 mgpdsg 13879 mgpress 13880 isrng 13883 issrg 13914 isring 13949 ring1 14008 oppraddg 14025 islmod 14240 rmodislmod 14300 lsssn0 14319 lss1d 14332 lssintclm 14333 sraaddgg 14389 mpocnfldadd 14510 psrplusgg 14627 |
| Copyright terms: Public domain | W3C validator |