| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusgslid | GIF version | ||
| Description: Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.) |
| Ref | Expression |
|---|---|
| plusgslid | ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plusg 13131 | . 2 ⊢ +g = Slot 2 | |
| 2 | 2nn 9280 | . 2 ⊢ 2 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13065 | 1 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 ℕcn 9118 2c2 9169 ndxcnx 13037 Slot cslot 13039 +gcplusg 13118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-plusg 13131 |
| This theorem is referenced by: ressplusgd 13170 rngplusgg 13178 srngplusgd 13189 lmodplusgd 13207 ipsaddgd 13219 topgrpplusgd 13239 prdsplusgfval 13325 imasex 13346 imasival 13347 imasbas 13348 imasplusg 13349 imasaddfn 13358 imasaddval 13359 imasaddf 13360 qusaddval 13376 qusaddf 13377 ismgm 13398 plusfvalg 13404 plusffng 13406 gsumpropd2 13434 gsumsplit1r 13439 gsumprval 13440 issgrp 13444 ismnddef 13459 gsumfzz 13536 gsumwsubmcl 13537 gsumwmhm 13539 gsumfzcl 13540 grppropstrg 13560 grpsubval 13587 mulgval 13667 mulgfng 13669 mulgnngsum 13672 mulg1 13674 mulgnnp1 13675 mulgnndir 13696 subgintm 13743 isnsg 13747 gsumfzreidx 13882 gsumfzsubmcl 13883 gsumfzmptfidmadd 13884 gsumfzconst 13886 gsumfzmhm 13888 fnmgp 13893 mgpvalg 13894 mgpplusgg 13895 mgpex 13896 mgpbasg 13897 mgpscag 13898 mgptsetg 13899 mgpdsg 13901 mgpress 13902 isrng 13905 issrg 13936 isring 13971 ring1 14030 oppraddg 14047 islmod 14263 rmodislmod 14323 lsssn0 14342 lss1d 14355 lssintclm 14356 sraaddgg 14412 mpocnfldadd 14533 psrplusgg 14650 |
| Copyright terms: Public domain | W3C validator |