| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusgslid | GIF version | ||
| Description: Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.) |
| Ref | Expression |
|---|---|
| plusgslid | ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plusg 12972 | . 2 ⊢ +g = Slot 2 | |
| 2 | 2nn 9211 | . 2 ⊢ 2 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12907 | 1 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 ℕcn 9049 2c2 9100 ndxcnx 12879 Slot cslot 12881 +gcplusg 12959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-inn 9050 df-2 9108 df-ndx 12885 df-slot 12886 df-plusg 12972 |
| This theorem is referenced by: ressplusgd 13011 rngplusgg 13019 srngplusgd 13030 lmodplusgd 13048 ipsaddgd 13060 topgrpplusgd 13080 prdsplusgfval 13166 imasex 13187 imasival 13188 imasbas 13189 imasplusg 13190 imasaddfn 13199 imasaddval 13200 imasaddf 13201 qusaddval 13217 qusaddf 13218 ismgm 13239 plusfvalg 13245 plusffng 13247 gsumpropd2 13275 gsumsplit1r 13280 gsumprval 13281 issgrp 13285 ismnddef 13300 gsumfzz 13377 gsumwsubmcl 13378 gsumwmhm 13380 gsumfzcl 13381 grppropstrg 13401 grpsubval 13428 mulgval 13508 mulgfng 13510 mulgnngsum 13513 mulg1 13515 mulgnnp1 13516 mulgnndir 13537 subgintm 13584 isnsg 13588 gsumfzreidx 13723 gsumfzsubmcl 13724 gsumfzmptfidmadd 13725 gsumfzconst 13727 gsumfzmhm 13729 fnmgp 13734 mgpvalg 13735 mgpplusgg 13736 mgpex 13737 mgpbasg 13738 mgpscag 13739 mgptsetg 13740 mgpdsg 13742 mgpress 13743 isrng 13746 issrg 13777 isring 13812 ring1 13871 oppraddg 13888 islmod 14103 rmodislmod 14163 lsssn0 14182 lss1d 14195 lssintclm 14196 sraaddgg 14252 mpocnfldadd 14373 psrplusgg 14490 |
| Copyright terms: Public domain | W3C validator |