![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > plusgslid | GIF version |
Description: Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.) |
Ref | Expression |
---|---|
plusgslid | ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plusg 12708 | . 2 ⊢ +g = Slot 2 | |
2 | 2nn 9143 | . 2 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | ndxslid 12643 | 1 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 ℕcn 8982 2c2 9033 ndxcnx 12615 Slot cslot 12617 +gcplusg 12695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-plusg 12708 |
This theorem is referenced by: ressplusgd 12746 rngplusgg 12754 srngplusgd 12765 lmodplusgd 12783 ipsaddgd 12795 topgrpplusgd 12815 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasaddfn 12900 imasaddval 12901 imasaddf 12902 qusaddval 12918 qusaddf 12919 ismgm 12940 plusfvalg 12946 plusffng 12948 gsumpropd2 12976 gsumsplit1r 12981 gsumprval 12982 issgrp 12986 ismnddef 12999 gsumfzz 13067 gsumwsubmcl 13068 gsumwmhm 13070 gsumfzcl 13071 grppropstrg 13091 grpsubval 13118 mulgval 13192 mulgfng 13194 mulgnngsum 13197 mulg1 13199 mulgnnp1 13200 mulgnndir 13221 subgintm 13268 isnsg 13272 gsumfzreidx 13407 gsumfzsubmcl 13408 gsumfzmptfidmadd 13409 gsumfzconst 13411 gsumfzmhm 13413 fnmgp 13418 mgpvalg 13419 mgpplusgg 13420 mgpex 13421 mgpbasg 13422 mgpscag 13423 mgptsetg 13424 mgpdsg 13426 mgpress 13427 isrng 13430 issrg 13461 isring 13496 ring1 13555 oppraddg 13572 islmod 13787 rmodislmod 13847 lsssn0 13866 lss1d 13879 lssintclm 13880 sraaddgg 13936 cnfldadd 14052 psrplusgg 14162 |
Copyright terms: Public domain | W3C validator |