![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > plusgslid | GIF version |
Description: Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.) |
Ref | Expression |
---|---|
plusgslid | ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plusg 12543 | . 2 ⊢ +g = Slot 2 | |
2 | 2nn 9078 | . 2 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | ndxslid 12481 | 1 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2148 ‘cfv 5216 ℕcn 8917 2c2 8968 ndxcnx 12453 Slot cslot 12455 +gcplusg 12530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-cnex 7901 ax-resscn 7902 ax-1re 7904 ax-addrcl 7907 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fv 5224 df-ov 5877 df-inn 8918 df-2 8976 df-ndx 12459 df-slot 12460 df-plusg 12543 |
This theorem is referenced by: ressplusgd 12581 rngplusgg 12589 srngplusgd 12600 lmodplusgd 12618 ipsaddgd 12630 topgrpplusgd 12647 imasex 12708 imasival 12709 imasbas 12710 imasplusg 12711 imasaddfn 12720 imasaddval 12721 imasaddf 12722 ismgm 12730 plusfvalg 12736 plusffng 12738 issgrp 12763 ismnddef 12773 grppropstrg 12849 grpsubval 12873 mulgval 12940 mulgfng 12941 mulg1 12944 mulgnnp1 12945 mulgnndir 12965 subgintm 13011 isnsg 13015 fnmgp 13085 mgpvalg 13086 mgpplusgg 13087 mgpex 13088 mgpbasg 13089 mgpscag 13090 mgptsetg 13091 mgpdsg 13093 mgpress 13094 issrg 13101 isring 13136 ring1 13189 oppraddg 13201 cnfldadd 13351 |
Copyright terms: Public domain | W3C validator |