ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmod1cl GIF version

Theorem lmod1cl 13811
Description: The ring unity in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod1cl.f 𝐹 = (Scalar‘𝑊)
lmod1cl.k 𝐾 = (Base‘𝐹)
lmod1cl.u 1 = (1r𝐹)
Assertion
Ref Expression
lmod1cl (𝑊 ∈ LMod → 1𝐾)

Proof of Theorem lmod1cl
StepHypRef Expression
1 lmod1cl.f . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 13791 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 lmod1cl.k . . 3 𝐾 = (Base‘𝐹)
4 lmod1cl.u . . 3 1 = (1r𝐹)
53, 4ringidcl 13516 . 2 (𝐹 ∈ Ring → 1𝐾)
62, 5syl 14 1 (𝑊 ∈ LMod → 1𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cfv 5254  Basecbs 12618  Scalarcsca 12698  1rcur 13455  Ringcrg 13492  LModclmod 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-ur 13456  df-ring 13494  df-lmod 13785
This theorem is referenced by:  lmodvs1  13812  lmodfopnelem2  13821  lmodfopne  13822  lmodvneg1  13826  lmodcom  13829  lssvacl  13861  lssvsubcl  13862  lspsn  13912  lspsnneg  13916
  Copyright terms: Public domain W3C validator