| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptexd | GIF version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. Deduction version of mptexg 5857. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| mptexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| mptexd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | mptexg 5857 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 |
| This theorem is referenced by: ccatfvalfi 11113 swrdval 11166 pfxval 11192 fnpfx 11195 prdsplusgval 13302 prdsmulrval 13304 qusval 13342 qusex 13344 gsumfzz 13514 grpinvfvalg 13561 grpsubval 13565 grplactfval 13620 gsumfzconst 13864 lspfval 14337 lspex 14344 sraval 14386 2lgslem1 15755 |
| Copyright terms: Public domain | W3C validator |