ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexd GIF version

Theorem mptexd 5870
Description: If the domain of a function given by maps-to notation is a set, the function is a set. Deduction version of mptexg 5868. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypothesis
Ref Expression
mptexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
mptexd (𝜑 → (𝑥𝐴𝐵) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mptexd
StepHypRef Expression
1 mptexd.1 . 2 (𝜑𝐴𝑉)
2 mptexg 5868 . 2 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
31, 2syl 14 1 (𝜑 → (𝑥𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  cmpt 4145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  ccatfvalfi  11135  swrdval  11188  pfxval  11214  fnpfx  11217  prdsplusgval  13324  prdsmulrval  13326  qusval  13364  qusex  13366  gsumfzz  13536  grpinvfvalg  13583  grpsubval  13587  grplactfval  13642  gsumfzconst  13886  lspfval  14360  lspex  14367  sraval  14409  2lgslem1  15778
  Copyright terms: Public domain W3C validator