ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1ii GIF version

Theorem ltmul1ii 8679
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) (Proof shortened by Paul Chapman, 25-Jan-2008.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
ltmul1i.4 0 < 𝐶
Assertion
Ref Expression
ltmul1ii (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))

Proof of Theorem ltmul1ii
StepHypRef Expression
1 ltmul1i.4 . 2 0 < 𝐶
2 ltplus1.1 . . 3 𝐴 ∈ ℝ
3 prodgt0.2 . . 3 𝐵 ∈ ℝ
4 ltmul1.3 . . 3 𝐶 ∈ ℝ
52, 3, 4ltmul1i 8671 . 2 (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
61, 5ax-mp 5 1 (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1480   class class class wbr 3924  (class class class)co 5767  cr 7612  0cc0 7613   · cmul 7618   < clt 7793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltadd 7729  ax-pre-mulgt0 7730
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-ltxr 7798  df-sub 7928  df-neg 7929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator