![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltmul1ii | GIF version |
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) (Proof shortened by Paul Chapman, 25-Jan-2008.) |
Ref | Expression |
---|---|
ltplus1.1 | โข ๐ด โ โ |
prodgt0.2 | โข ๐ต โ โ |
ltmul1.3 | โข ๐ถ โ โ |
ltmul1i.4 | โข 0 < ๐ถ |
Ref | Expression |
---|---|
ltmul1ii | โข (๐ด < ๐ต โ (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmul1i.4 | . 2 โข 0 < ๐ถ | |
2 | ltplus1.1 | . . 3 โข ๐ด โ โ | |
3 | prodgt0.2 | . . 3 โข ๐ต โ โ | |
4 | ltmul1.3 | . . 3 โข ๐ถ โ โ | |
5 | 2, 3, 4 | ltmul1i 8876 | . 2 โข (0 < ๐ถ โ (๐ด < ๐ต โ (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ))) |
6 | 1, 5 | ax-mp 5 | 1 โข (๐ด < ๐ต โ (๐ด ยท ๐ถ) < (๐ต ยท ๐ถ)) |
Colors of variables: wff set class |
Syntax hints: โ wb 105 โ wcel 2148 class class class wbr 4003 (class class class)co 5874 โcr 7809 0cc0 7810 ยท cmul 7815 < clt 7991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-iota 5178 df-fun 5218 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7993 df-mnf 7994 df-ltxr 7996 df-sub 8129 df-neg 8130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |