![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qabsor | GIF version |
Description: The absolute value of a rational number is either that number or its negative. (Contributed by Jim Kingdon, 8-Nov-2021.) |
Ref | Expression |
---|---|
qabsor | ⊢ (𝐴 ∈ ℚ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qre 9003 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
2 | 0z 8655 | . . . 4 ⊢ 0 ∈ ℤ | |
3 | zq 9004 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
4 | 2, 3 | ax-mp 7 | . . 3 ⊢ 0 ∈ ℚ |
5 | qletric 9542 | . . 3 ⊢ ((0 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (0 ≤ 𝐴 ∨ 𝐴 ≤ 0)) | |
6 | 4, 5 | mpan 415 | . 2 ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐴 ∨ 𝐴 ≤ 0)) |
7 | absid 10329 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
8 | 7 | ex 113 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴)) |
9 | absnid 10331 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | |
10 | 9 | ex 113 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴)) |
11 | 8, 10 | orim12d 733 | . 2 ⊢ (𝐴 ∈ ℝ → ((0 ≤ 𝐴 ∨ 𝐴 ≤ 0) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))) |
12 | 1, 6, 11 | sylc 61 | 1 ⊢ (𝐴 ∈ ℚ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 662 = wceq 1285 ∈ wcel 1434 class class class wbr 3811 ‘cfv 4967 ℝcr 7250 0cc0 7251 ≤ cle 7424 -cneg 7555 ℤcz 8644 ℚcq 8997 abscabs 10255 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7337 ax-resscn 7338 ax-1cn 7339 ax-1re 7340 ax-icn 7341 ax-addcl 7342 ax-addrcl 7343 ax-mulcl 7344 ax-mulrcl 7345 ax-addcom 7346 ax-mulcom 7347 ax-addass 7348 ax-mulass 7349 ax-distr 7350 ax-i2m1 7351 ax-0lt1 7352 ax-1rid 7353 ax-0id 7354 ax-rnegex 7355 ax-precex 7356 ax-cnre 7357 ax-pre-ltirr 7358 ax-pre-ltwlin 7359 ax-pre-lttrn 7360 ax-pre-apti 7361 ax-pre-ltadd 7362 ax-pre-mulgt0 7363 ax-pre-mulext 7364 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-if 3374 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-po 4086 df-iso 4087 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-rn 4410 df-res 4411 df-ima 4412 df-iota 4932 df-fun 4969 df-fn 4970 df-f 4971 df-f1 4972 df-fo 4973 df-f1o 4974 df-fv 4975 df-riota 5545 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-1st 5844 df-2nd 5845 df-recs 6000 df-frec 6086 df-pnf 7425 df-mnf 7426 df-xr 7427 df-ltxr 7428 df-le 7429 df-sub 7556 df-neg 7557 df-reap 7950 df-ap 7957 df-div 8036 df-inn 8315 df-2 8373 df-n0 8564 df-z 8645 df-uz 8913 df-q 8998 df-rp 9028 df-iseq 9739 df-iexp 9790 df-cj 10101 df-re 10102 df-im 10103 df-rsqrt 10256 df-abs 10257 |
This theorem is referenced by: qabsord 10334 gcdabs 10757 lcmabs 10836 |
Copyright terms: Public domain | W3C validator |