![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renegcli | GIF version |
Description: Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 7733 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
renegcl.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
renegcli | ⊢ -𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | renegcl 7733 | . 2 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ -𝐴 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 ℝcr 7339 -cneg 7644 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 ax-setind 4351 ax-resscn 7427 ax-1cn 7428 ax-icn 7430 ax-addcl 7431 ax-addrcl 7432 ax-mulcl 7433 ax-addcom 7435 ax-addass 7437 ax-distr 7439 ax-i2m1 7440 ax-0id 7443 ax-rnegex 7444 ax-cnre 7446 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-opab 3898 df-id 4118 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-iota 4975 df-fun 5012 df-fv 5018 df-riota 5600 df-ov 5647 df-oprab 5648 df-mpt2 5649 df-sub 7645 df-neg 7646 |
This theorem is referenced by: resubcli 7735 inelr 8051 cju 8411 neg1rr 8518 sincos2sgn 11043 ex-fl 11535 |
Copyright terms: Public domain | W3C validator |