| Step | Hyp | Ref
| Expression |
| 1 | | iseqid.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | eluzelz 9610 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 3 | 1, 2 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 4 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑁)) → 𝑥 ∈ (ℤ≥‘𝑁)) |
| 5 | 1 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | | uztrn 9618 |
. . . . . . 7
⊢ ((𝑥 ∈
(ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 7 | 4, 5, 6 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑁)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 8 | | iseqid.f |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 9 | 7, 8 | syldan 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
| 10 | | iseqid.cl |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 11 | 3, 9, 10 | seq3-1 10554 |
. . . 4
⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
| 12 | | seqeq1 10542 |
. . . . . 6
⊢ (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 13 | 12 | fveq1d 5560 |
. . . . 5
⊢ (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 14 | 13 | eqeq1d 2205 |
. . . 4
⊢ (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
| 15 | 11, 14 | syl5ibcom 155 |
. . 3
⊢ (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
| 16 | | eluzel2 9606 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 17 | 1, 16 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 18 | 17 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℤ) |
| 19 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
| 20 | 8 | adantlr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 21 | 10 | adantlr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 22 | 18, 19, 20, 21 | seq3m1 10565 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁))) |
| 23 | | oveq2 5930 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍)) |
| 24 | | id 19 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑍 → 𝑥 = 𝑍) |
| 25 | 23, 24 | eqeq12d 2211 |
. . . . . . . . 9
⊢ (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍)) |
| 26 | | iseqid.1 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑥) |
| 27 | 26 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
| 28 | | iseqid.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| 29 | 25, 27, 28 | rspcdva 2873 |
. . . . . . . 8
⊢ (𝜑 → (𝑍 + 𝑍) = 𝑍) |
| 30 | 29 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍) |
| 31 | | eluzp1m1 9625 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| 32 | 17, 31 | sylan 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| 33 | | iseqid.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
| 34 | 33 | adantlr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑥) = 𝑍) |
| 35 | 28 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑍 ∈ 𝑆) |
| 36 | 30, 32, 34, 35, 20, 21 | seq3id3 10616 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝑁 − 1)) = 𝑍) |
| 37 | 36 | oveq1d 5937 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘𝑁)) = (𝑍 + (𝐹‘𝑁))) |
| 38 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘𝑁))) |
| 39 | | id 19 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑁) → 𝑥 = (𝐹‘𝑁)) |
| 40 | 38, 39 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁))) |
| 41 | 27 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑥) |
| 42 | | iseqid.4 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑁) ∈ 𝑆) |
| 43 | 42 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑁) ∈ 𝑆) |
| 44 | 40, 41, 43 | rspcdva 2873 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑍 + (𝐹‘𝑁)) = (𝐹‘𝑁)) |
| 45 | 22, 37, 44 | 3eqtrd 2233 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
| 46 | 45 | ex 115 |
. . 3
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁))) |
| 47 | | uzp1 9635 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 48 | 1, 47 | syl 14 |
. . 3
⊢ (𝜑 → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 49 | 15, 46, 48 | mpjaod 719 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
| 50 | | eqidd 2197 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 51 | 1, 49, 8, 9, 10, 50 | seq3feq2 10568 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |