![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > submbas | GIF version |
Description: The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015.) |
Ref | Expression |
---|---|
submmnd.h | ⊢ 𝐻 = (𝑀 ↾s 𝑆) |
Ref | Expression |
---|---|
submbas | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submmnd.h | . . 3 ⊢ 𝐻 = (𝑀 ↾s 𝑆) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝐻 = (𝑀 ↾s 𝑆)) |
3 | eqid 2189 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
4 | 3 | a1i 9 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (Base‘𝑀) = (Base‘𝑀)) |
5 | submrcl 12946 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | |
6 | 3 | submss 12951 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
7 | 2, 4, 5, 6 | ressbas2d 12591 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ‘cfv 5238 (class class class)co 5900 Basecbs 12523 ↾s cress 12524 Mndcmnd 12900 SubMndcsubmnd 12933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1re 7940 ax-addrcl 7943 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-fv 5246 df-ov 5903 df-oprab 5904 df-mpo 5905 df-inn 8955 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-iress 12531 df-submnd 12935 |
This theorem is referenced by: subsubm 12958 resmhm2 12963 resmhm2b 12964 |
Copyright terms: Public domain | W3C validator |