| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > submbas | GIF version | ||
| Description: The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| submmnd.h | ⊢ 𝐻 = (𝑀 ↾s 𝑆) | 
| Ref | Expression | 
|---|---|
| submbas | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | submmnd.h | . . 3 ⊢ 𝐻 = (𝑀 ↾s 𝑆) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝐻 = (𝑀 ↾s 𝑆)) | 
| 3 | eqid 2196 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 4 | 3 | a1i 9 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (Base‘𝑀) = (Base‘𝑀)) | 
| 5 | submrcl 13103 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | |
| 6 | 3 | submss 13108 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) | 
| 7 | 2, 4, 5, 6 | ressbas2d 12746 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 ↾s cress 12679 Mndcmnd 13057 SubMndcsubmnd 13090 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-submnd 13092 | 
| This theorem is referenced by: subsubm 13115 resmhm2 13120 resmhm2b 13121 submmulg 13296 | 
| Copyright terms: Public domain | W3C validator |