ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm2 GIF version

Theorem resmhm2 12933
Description: One direction of resmhm2b 12934. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resmhm2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))

Proof of Theorem resmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 12908 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑈) → 𝑆 ∈ Mnd)
2 submrcl 12916 . . 3 (𝑋 ∈ (SubMnd‘𝑇) → 𝑇 ∈ Mnd)
31, 2anim12i 338 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
4 eqid 2189 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
5 eqid 2189 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
64, 5mhmf 12910 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑈) → 𝐹:(Base‘𝑆)⟶(Base‘𝑈))
7 resmhm2.u . . . . . 6 𝑈 = (𝑇s 𝑋)
87submbas 12926 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 = (Base‘𝑈))
9 eqid 2189 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
109submss 12921 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 ⊆ (Base‘𝑇))
118, 10eqsstrrd 3207 . . . 4 (𝑋 ∈ (SubMnd‘𝑇) → (Base‘𝑈) ⊆ (Base‘𝑇))
12 fss 5393 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑈) ∧ (Base‘𝑈) ⊆ (Base‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
136, 11, 12syl2an 289 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
14 eqid 2189 . . . . . . . 8 (+g𝑆) = (+g𝑆)
15 eqid 2189 . . . . . . . 8 (+g𝑈) = (+g𝑈)
164, 14, 15mhmlin 12912 . . . . . . 7 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
17163expb 1206 . . . . . 6 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
1817adantlr 477 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
197a1i 9 . . . . . . . 8 (𝑋 ∈ (SubMnd‘𝑇) → 𝑈 = (𝑇s 𝑋))
20 eqidd 2190 . . . . . . . 8 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑇))
21 id 19 . . . . . . . 8 (𝑋 ∈ (SubMnd‘𝑇) → 𝑋 ∈ (SubMnd‘𝑇))
2219, 20, 21, 2ressplusgd 12633 . . . . . . 7 (𝑋 ∈ (SubMnd‘𝑇) → (+g𝑇) = (+g𝑈))
2322ad2antlr 489 . . . . . 6 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (+g𝑇) = (+g𝑈))
2423oveqd 5909 . . . . 5 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑈)(𝐹𝑦)))
2518, 24eqtr4d 2225 . . . 4 (((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
2625ralrimivva 2572 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
27 eqid 2189 . . . . . 6 (0g𝑆) = (0g𝑆)
28 eqid 2189 . . . . . 6 (0g𝑈) = (0g𝑈)
2927, 28mhm0 12913 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑈) → (𝐹‘(0g𝑆)) = (0g𝑈))
3029adantr 276 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑈))
31 eqid 2189 . . . . . 6 (0g𝑇) = (0g𝑇)
327, 31subm0 12927 . . . . 5 (𝑋 ∈ (SubMnd‘𝑇) → (0g𝑇) = (0g𝑈))
3332adantl 277 . . . 4 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (0g𝑇) = (0g𝑈))
3430, 33eqtr4d 2225 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
3513, 26, 343jca 1179 . 2 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
36 eqid 2189 . . 3 (+g𝑇) = (+g𝑇)
374, 9, 14, 36, 27, 31ismhm 12906 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
383, 35, 37sylanbrc 417 1 ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2160  wral 2468  wss 3144  wf 5228  cfv 5232  (class class class)co 5892  Basecbs 12507  s cress 12508  +gcplusg 12582  0gc0g 12754  Mndcmnd 12870   MndHom cmhm 12902  SubMndcsubmnd 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-pre-ltirr 7948  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-map 6671  df-pnf 8019  df-mnf 8020  df-ltxr 8022  df-inn 8945  df-2 9003  df-ndx 12510  df-slot 12511  df-base 12513  df-sets 12514  df-iress 12515  df-plusg 12595  df-0g 12756  df-mgm 12825  df-sgrp 12858  df-mnd 12871  df-mhm 12904  df-submnd 12905
This theorem is referenced by:  resmhm2b  12934  resghm2  13193
  Copyright terms: Public domain W3C validator