Proof of Theorem submmulg
Step | Hyp | Ref
| Expression |
1 | | simpl1 1002 |
. . . . . 6
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺)) |
2 | | submmulg.h |
. . . . . . . 8
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
3 | 2 | a1i 9 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) |
4 | | eqidd 2194 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(+g‘𝐺) =
(+g‘𝐺)) |
5 | | id 19 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺)) |
6 | | submrcl 13043 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) |
7 | 3, 4, 5, 6 | ressplusgd 12746 |
. . . . . 6
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(+g‘𝐺) =
(+g‘𝐻)) |
8 | 1, 7 | syl 14 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) →
(+g‘𝐺) =
(+g‘𝐻)) |
9 | 8 | seqeq2d 10525 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) →
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋}))) |
10 | 9 | fveq1d 5556 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) →
(seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
11 | | simpr 110 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
12 | | eqid 2193 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
13 | 12 | submss 13048 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
14 | 13 | 3ad2ant1 1020 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
15 | | simp3 1001 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) |
16 | 14, 15 | sseldd 3180 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
17 | 16 | adantr 276 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐺)) |
18 | | eqid 2193 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
19 | | submmulgcl.t |
. . . . 5
⊢ ∙ =
(.g‘𝐺) |
20 | | eqid 2193 |
. . . . 5
⊢
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) |
21 | 12, 18, 19, 20 | mulgnn 13196 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 ∙ 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
22 | 11, 17, 21 | syl2anc 411 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 ∙ 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
23 | 2 | submbas 13053 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻)) |
24 | 23 | 3ad2ant1 1020 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
25 | 15, 24 | eleqtrd 2272 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
26 | 25 | adantr 276 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐻)) |
27 | | eqid 2193 |
. . . . 5
⊢
(Base‘𝐻) =
(Base‘𝐻) |
28 | | eqid 2193 |
. . . . 5
⊢
(+g‘𝐻) = (+g‘𝐻) |
29 | | submmulg.t |
. . . . 5
⊢ · =
(.g‘𝐻) |
30 | | eqid 2193 |
. . . . 5
⊢
seq1((+g‘𝐻), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) |
31 | 27, 28, 29, 30 | mulgnn 13196 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 · 𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
32 | 11, 26, 31 | syl2anc 411 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (seq1((+g‘𝐻), (ℕ × {𝑋}))‘𝑁)) |
33 | 10, 22, 32 | 3eqtr4d 2236 |
. 2
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) |
34 | | simpl1 1002 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 𝑆 ∈ (SubMnd‘𝐺)) |
35 | | eqid 2193 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
36 | 2, 35 | subm0 13054 |
. . . . 5
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
37 | 34, 36 | syl 14 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (0g‘𝐺) = (0g‘𝐻)) |
38 | 16 | adantr 276 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
39 | 12, 35, 19 | mulg0 13195 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝐺) → (0 ∙ 𝑋) = (0g‘𝐺)) |
40 | 38, 39 | syl 14 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (0 ∙ 𝑋) = (0g‘𝐺)) |
41 | 25 | adantr 276 |
. . . . 5
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐻)) |
42 | | eqid 2193 |
. . . . . 6
⊢
(0g‘𝐻) = (0g‘𝐻) |
43 | 27, 42, 29 | mulg0 13195 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝐻) → (0 · 𝑋) = (0g‘𝐻)) |
44 | 41, 43 | syl 14 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g‘𝐻)) |
45 | 37, 40, 44 | 3eqtr4d 2236 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (0 ∙ 𝑋) = (0 · 𝑋)) |
46 | | simpr 110 |
. . . 4
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 𝑁 = 0) |
47 | 46 | oveq1d 5933 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 ∙ 𝑋) = (0 ∙ 𝑋)) |
48 | 46 | oveq1d 5933 |
. . 3
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋)) |
49 | 45, 47, 48 | 3eqtr4d 2236 |
. 2
⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) |
50 | | simp2 1000 |
. . 3
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈
ℕ0) |
51 | | elnn0 9242 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
52 | 50, 51 | sylib 122 |
. 2
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
53 | 33, 49, 52 | mpjaodan 799 |
1
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) |