ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submmulg GIF version

Theorem submmulg 13236
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
submmulgcl.t = (.g𝐺)
submmulg.h 𝐻 = (𝐺s 𝑆)
submmulg.t · = (.g𝐻)
Assertion
Ref Expression
submmulg ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))

Proof of Theorem submmulg
StepHypRef Expression
1 simpl1 1002 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
2 submmulg.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
32a1i 9 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 = (𝐺s 𝑆))
4 eqidd 2194 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐺))
5 id 19 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺))
6 submrcl 13043 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
73, 4, 5, 6ressplusgd 12746 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
81, 7syl 14 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (+g𝐺) = (+g𝐻))
98seqeq2d 10525 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
109fveq1d 5556 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
11 simpr 110 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
12 eqid 2193 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
1312submss 13048 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
14133ad2ant1 1020 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
15 simp3 1001 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝑆)
1614, 15sseldd 3180 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
1716adantr 276 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐺))
18 eqid 2193 . . . . 5 (+g𝐺) = (+g𝐺)
19 submmulgcl.t . . . . 5 = (.g𝐺)
20 eqid 2193 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
2112, 18, 19, 20mulgnn 13196 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2211, 17, 21syl2anc 411 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
232submbas 13053 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
24233ad2ant1 1020 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 = (Base‘𝐻))
2515, 24eleqtrd 2272 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
2625adantr 276 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐻))
27 eqid 2193 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
28 eqid 2193 . . . . 5 (+g𝐻) = (+g𝐻)
29 submmulg.t . . . . 5 · = (.g𝐻)
30 eqid 2193 . . . . 5 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
3127, 28, 29, 30mulgnn 13196 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
3211, 26, 31syl2anc 411 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
3310, 22, 323eqtr4d 2236 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (𝑁 · 𝑋))
34 simpl1 1002 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑆 ∈ (SubMnd‘𝐺))
35 eqid 2193 . . . . . 6 (0g𝐺) = (0g𝐺)
362, 35subm0 13054 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
3734, 36syl 14 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0g𝐺) = (0g𝐻))
3816adantr 276 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺))
3912, 35, 19mulg0 13195 . . . . 5 (𝑋 ∈ (Base‘𝐺) → (0 𝑋) = (0g𝐺))
4038, 39syl 14 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0g𝐺))
4125adantr 276 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐻))
42 eqid 2193 . . . . . 6 (0g𝐻) = (0g𝐻)
4327, 42, 29mulg0 13195 . . . . 5 (𝑋 ∈ (Base‘𝐻) → (0 · 𝑋) = (0g𝐻))
4441, 43syl 14 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐻))
4537, 40, 443eqtr4d 2236 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0 · 𝑋))
46 simpr 110 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑁 = 0)
4746oveq1d 5933 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (0 𝑋))
4846oveq1d 5933 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
4945, 47, 483eqtr4d 2236 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (𝑁 · 𝑋))
50 simp2 1000 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑁 ∈ ℕ0)
51 elnn0 9242 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
5250, 51sylib 122 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
5333, 49, 52mpjaodan 799 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  wss 3153  {csn 3618   × cxp 4657  cfv 5254  (class class class)co 5918  0cc0 7872  1c1 7873  cn 8982  0cn0 9240  seqcseq 10518  Basecbs 12618  s cress 12619  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997  SubMndcsubmnd 13030  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-submnd 13032  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator