ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemexb GIF version

Theorem caucvgprprlemexb 7736
Description: Lemma for caucvgprpr 7741. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemexb.q (𝜑𝑄P)
caucvgprprlemexb.r (𝜑𝑅N)
Assertion
Ref Expression
caucvgprprlemexb (𝜑 → (((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐹,𝑏   𝑘,𝐹,𝑙,𝑛,𝑢   𝐹,𝑟   𝐿,𝑏   𝑘,𝐿   𝑅,𝑏,𝑝,𝑞   𝜑,𝑏   𝑘,𝑝,𝑞,𝑟,𝑙,𝑢   𝑟,𝑏
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑏,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑏,𝑙)   𝑅(𝑢,𝑘,𝑚,𝑛,𝑟,𝑙)   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemexb
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . . . 6 (𝜑𝐹:NP)
2 caucvgprpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprpr.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
4 caucvgprpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
51, 2, 3, 4caucvgprprlemclphr 7734 . . . . 5 (𝜑𝐿P)
6 caucvgprprlemexb.r . . . . . 6 (𝜑𝑅N)
7 recnnpr 7577 . . . . . 6 (𝑅N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
86, 7syl 14 . . . . 5 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
9 addclpr 7566 . . . . 5 ((𝐿P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
105, 8, 9syl2anc 411 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
111, 6ffvelcdmd 5673 . . . 4 (𝜑 → (𝐹𝑅) ∈ P)
12 caucvgprprlemexb.q . . . 4 (𝜑𝑄P)
13 ltaprg 7648 . . . 4 (((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ (𝐹𝑅) ∈ P𝑄P) → ((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P (𝑄 +P (𝐹𝑅))))
1410, 11, 12, 13syl3anc 1249 . . 3 (𝜑 → ((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P (𝑄 +P (𝐹𝑅))))
15 addassprg 7608 . . . . . 6 ((𝑄P𝐿P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝑄 +P 𝐿) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) = (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)))
1612, 5, 8, 15syl3anc 1249 . . . . 5 (𝜑 → ((𝑄 +P 𝐿) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) = (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)))
17 addcomprg 7607 . . . . . . 7 ((𝑄P𝐿P) → (𝑄 +P 𝐿) = (𝐿 +P 𝑄))
1812, 5, 17syl2anc 411 . . . . . 6 (𝜑 → (𝑄 +P 𝐿) = (𝐿 +P 𝑄))
1918oveq1d 5911 . . . . 5 (𝜑 → ((𝑄 +P 𝐿) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))
2016, 19eqtr3d 2224 . . . 4 (𝜑 → (𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)) = ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))
21 addcomprg 7607 . . . . 5 ((𝑄P ∧ (𝐹𝑅) ∈ P) → (𝑄 +P (𝐹𝑅)) = ((𝐹𝑅) +P 𝑄))
2212, 11, 21syl2anc 411 . . . 4 (𝜑 → (𝑄 +P (𝐹𝑅)) = ((𝐹𝑅) +P 𝑄))
2320, 22breq12d 4031 . . 3 (𝜑 → ((𝑄 +P (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P (𝑄 +P (𝐹𝑅)) ↔ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄)))
2414, 23bitrd 188 . 2 (𝜑 → ((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ ((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄)))
251adantr 276 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → 𝐹:NP)
262adantr 276 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
273adantr 276 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → ∀𝑚N 𝐴<P (𝐹𝑚))
28 nnnq 7451 . . . . . . 7 (𝑅N → [⟨𝑅, 1o⟩] ~QQ)
29 recclnq 7421 . . . . . . 7 ([⟨𝑅, 1o⟩] ~QQ → (*Q‘[⟨𝑅, 1o⟩] ~Q ) ∈ Q)
306, 28, 293syl 17 . . . . . 6 (𝜑 → (*Q‘[⟨𝑅, 1o⟩] ~Q ) ∈ Q)
3130adantr 276 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → (*Q‘[⟨𝑅, 1o⟩] ~Q ) ∈ Q)
3211adantr 276 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → (𝐹𝑅) ∈ P)
33 simpr 110 . . . . 5 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅))
3425, 26, 27, 4, 31, 32, 33caucvgprprlemexbt 7735 . . . 4 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅))
35 ltaprg 7648 . . . . . . . 8 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3635adantl 277 . . . . . . 7 ((((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3725ffvelcdmda 5672 . . . . . . . . 9 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (𝐹𝑏) ∈ P)
38 recnnpr 7577 . . . . . . . . . 10 (𝑏N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3938adantl 277 . . . . . . . . 9 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
40 addclpr 7566 . . . . . . . . 9 (((𝐹𝑏) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4137, 39, 40syl2anc 411 . . . . . . . 8 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
426ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → 𝑅N)
4342, 7syl 14 . . . . . . . 8 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
44 addclpr 7566 . . . . . . . 8 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4541, 43, 44syl2anc 411 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4611ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (𝐹𝑅) ∈ P)
4712ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → 𝑄P)
48 addcomprg 7607 . . . . . . . 8 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
4948adantl 277 . . . . . . 7 ((((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5036, 45, 46, 47, 49caovord2d 6066 . . . . . 6 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) +P 𝑄)<P ((𝐹𝑅) +P 𝑄)))
51 addassprg 7608 . . . . . . . 8 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P𝑄P) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) +P 𝑄) = (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄)))
5241, 43, 47, 51syl3anc 1249 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) +P 𝑄) = (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄)))
5352breq1d 4028 . . . . . 6 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩) +P 𝑄)<P ((𝐹𝑅) +P 𝑄) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄))<P ((𝐹𝑅) +P 𝑄)))
54 addcomprg 7607 . . . . . . . . 9 ((⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P𝑄P) → (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄) = (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))
5543, 47, 54syl2anc 411 . . . . . . . 8 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄) = (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))
5655oveq2d 5912 . . . . . . 7 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄)) = (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)))
5756breq1d 4028 . . . . . 6 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩ +P 𝑄))<P ((𝐹𝑅) +P 𝑄) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
5850, 53, 573bitrd 214 . . . . 5 (((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) ∧ 𝑏N) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
5958rexbidva 2487 . . . 4 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → (∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) ↔ ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
6034, 59mpbid 147 . . 3 ((𝜑 ∧ (𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅)) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄))
6160ex 115 . 2 (𝜑 → ((𝐿 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝑅) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
6224, 61sylbird 170 1 (𝜑 → (((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1o⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  {cab 2175  wral 2468  wrex 2469  {crab 2472  cop 3610   class class class wbr 4018  wf 5231  cfv 5235  (class class class)co 5896  1oc1o 6434  [cec 6557  Ncnpi 7301   <N clti 7304   ~Q ceq 7308  Qcnq 7309   +Q cplq 7311  *Qcrq 7313   <Q cltq 7314  Pcnp 7320   +P cpp 7322  <P cltp 7324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-1o 6441  df-2o 6442  df-oadd 6445  df-omul 6446  df-er 6559  df-ec 6561  df-qs 6565  df-ni 7333  df-pli 7334  df-mi 7335  df-lti 7336  df-plpq 7373  df-mpq 7374  df-enq 7376  df-nqqs 7377  df-plqqs 7378  df-mqqs 7379  df-1nqqs 7380  df-rq 7381  df-ltnqqs 7382  df-enq0 7453  df-nq0 7454  df-0nq0 7455  df-plq0 7456  df-mq0 7457  df-inp 7495  df-iplp 7497  df-iltp 7499
This theorem is referenced by:  caucvgprprlemaddq  7737
  Copyright terms: Public domain W3C validator