| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgprpr.f | 
. . . . . 6
⊢ (𝜑 → 𝐹:N⟶P) | 
| 2 |   | caucvgprpr.cau | 
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 3 |   | caucvgprpr.bnd | 
. . . . . 6
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) | 
| 4 |   | caucvgprpr.lim | 
. . . . . 6
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 | 
| 5 | 1, 2, 3, 4 | caucvgprprlemclphr 7772 | 
. . . . 5
⊢ (𝜑 → 𝐿 ∈ P) | 
| 6 |   | caucvgprprlemexb.r | 
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ N) | 
| 7 |   | recnnpr 7615 | 
. . . . . 6
⊢ (𝑅 ∈ N →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) | 
| 8 | 6, 7 | syl 14 | 
. . . . 5
⊢ (𝜑 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) | 
| 9 |   | addclpr 7604 | 
. . . . 5
⊢ ((𝐿 ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) → (𝐿 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) | 
| 10 | 5, 8, 9 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) | 
| 11 | 1, 6 | ffvelcdmd 5698 | 
. . . 4
⊢ (𝜑 → (𝐹‘𝑅) ∈ P) | 
| 12 |   | caucvgprprlemexb.q | 
. . . 4
⊢ (𝜑 → 𝑄 ∈ P) | 
| 13 |   | ltaprg 7686 | 
. . . 4
⊢ (((𝐿 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧ (𝐹‘𝑅) ∈ P ∧ 𝑄 ∈ P) →
((𝐿
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅) ↔ (𝑄 +P (𝐿 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
(𝑄
+P (𝐹‘𝑅)))) | 
| 14 | 10, 11, 12, 13 | syl3anc 1249 | 
. . 3
⊢ (𝜑 → ((𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅) ↔ (𝑄 +P (𝐿 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
(𝑄
+P (𝐹‘𝑅)))) | 
| 15 |   | addassprg 7646 | 
. . . . . 6
⊢ ((𝑄 ∈ P ∧
𝐿 ∈ P
∧ 〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
((𝑄
+P 𝐿) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) = (𝑄 +P (𝐿 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))) | 
| 16 | 12, 5, 8, 15 | syl3anc 1249 | 
. . . . 5
⊢ (𝜑 → ((𝑄 +P 𝐿) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) = (𝑄 +P (𝐿 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))) | 
| 17 |   | addcomprg 7645 | 
. . . . . . 7
⊢ ((𝑄 ∈ P ∧
𝐿 ∈ P)
→ (𝑄
+P 𝐿) = (𝐿 +P 𝑄)) | 
| 18 | 12, 5, 17 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → (𝑄 +P 𝐿) = (𝐿 +P 𝑄)) | 
| 19 | 18 | oveq1d 5937 | 
. . . . 5
⊢ (𝜑 → ((𝑄 +P 𝐿) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐿 +P 𝑄) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 20 | 16, 19 | eqtr3d 2231 | 
. . . 4
⊢ (𝜑 → (𝑄 +P (𝐿 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)) = ((𝐿 +P 𝑄) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 21 |   | addcomprg 7645 | 
. . . . 5
⊢ ((𝑄 ∈ P ∧
(𝐹‘𝑅) ∈ P) → (𝑄 +P
(𝐹‘𝑅)) = ((𝐹‘𝑅) +P 𝑄)) | 
| 22 | 12, 11, 21 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → (𝑄 +P (𝐹‘𝑅)) = ((𝐹‘𝑅) +P 𝑄)) | 
| 23 | 20, 22 | breq12d 4046 | 
. . 3
⊢ (𝜑 → ((𝑄 +P (𝐿 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
(𝑄
+P (𝐹‘𝑅)) ↔ ((𝐿 +P 𝑄) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑅) +P 𝑄))) | 
| 24 | 14, 23 | bitrd 188 | 
. 2
⊢ (𝜑 → ((𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅) ↔ ((𝐿 +P 𝑄) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑅) +P 𝑄))) | 
| 25 | 1 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) → 𝐹:N⟶P) | 
| 26 | 2 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 27 | 3 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) | 
| 28 |   | nnnq 7489 | 
. . . . . . 7
⊢ (𝑅 ∈ N →
[〈𝑅,
1o〉] ~Q ∈
Q) | 
| 29 |   | recclnq 7459 | 
. . . . . . 7
⊢
([〈𝑅,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑅, 1o〉]
~Q ) ∈ Q) | 
| 30 | 6, 28, 29 | 3syl 17 | 
. . . . . 6
⊢ (𝜑 →
(*Q‘[〈𝑅, 1o〉]
~Q ) ∈ Q) | 
| 31 | 30 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) →
(*Q‘[〈𝑅, 1o〉]
~Q ) ∈ Q) | 
| 32 | 11 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) → (𝐹‘𝑅) ∈ P) | 
| 33 |   | simpr 110 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) → (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) | 
| 34 | 25, 26, 27, 4, 31, 32, 33 | caucvgprprlemexbt 7773 | 
. . . 4
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) | 
| 35 |   | ltaprg 7686 | 
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) | 
| 36 | 35 | adantl 277 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) ∧ (𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P)) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) | 
| 37 | 25 | ffvelcdmda 5697 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → (𝐹‘𝑏) ∈ P) | 
| 38 |   | recnnpr 7615 | 
. . . . . . . . . 10
⊢ (𝑏 ∈ N →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) | 
| 39 | 38 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) | 
| 40 |   | addclpr 7604 | 
. . . . . . . . 9
⊢ (((𝐹‘𝑏) ∈ P ∧ 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
((𝐹‘𝑏) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) | 
| 41 | 37, 39, 40 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) | 
| 42 | 6 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → 𝑅 ∈
N) | 
| 43 | 42, 7 | syl 14 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 ∈
P) | 
| 44 |   | addclpr 7604 | 
. . . . . . . 8
⊢ ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P) →
(((𝐹‘𝑏) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) | 
| 45 | 41, 43, 44 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) ∈
P) | 
| 46 | 11 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → (𝐹‘𝑅) ∈ P) | 
| 47 | 12 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → 𝑄 ∈
P) | 
| 48 |   | addcomprg 7645 | 
. . . . . . . 8
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) | 
| 49 | 48 | adantl 277 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) ∧ (𝑓 ∈ P ∧
𝑔 ∈ P))
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) | 
| 50 | 36, 45, 46, 47, 49 | caovord2d 6093 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅) ↔ ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) +P 𝑄)<P
((𝐹‘𝑅) +P 𝑄))) | 
| 51 |   | addassprg 7646 | 
. . . . . . . 8
⊢ ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) ∈ P ∧
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P ∧ 𝑄 ∈ P) →
((((𝐹‘𝑏) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) +P 𝑄) = (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
(〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 +P 𝑄))) | 
| 52 | 41, 43, 47, 51 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) +P 𝑄) = (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
(〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 +P 𝑄))) | 
| 53 | 52 | breq1d 4043 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → (((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉) +P 𝑄)<P
((𝐹‘𝑅) +P 𝑄) ↔ (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
(〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 +P 𝑄))<P
((𝐹‘𝑅) +P 𝑄))) | 
| 54 |   | addcomprg 7645 | 
. . . . . . . . 9
⊢
((〈{𝑝 ∣
𝑝
<Q (*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 ∈ P ∧ 𝑄 ∈ P) →
(〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 +P 𝑄) = (𝑄 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 55 | 43, 47, 54 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → (〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 +P 𝑄) = (𝑄 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 56 | 55 | oveq2d 5938 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
(〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 +P 𝑄)) = (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P (𝑄 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))) | 
| 57 | 56 | breq1d 4043 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
(〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉 +P 𝑄))<P
((𝐹‘𝑅) +P 𝑄) ↔ (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P (𝑄 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
((𝐹‘𝑅) +P 𝑄))) | 
| 58 | 50, 53, 57 | 3bitrd 214 | 
. . . . 5
⊢ (((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) ∧ 𝑏 ∈ N) → ((((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅) ↔ (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P (𝑄 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
((𝐹‘𝑅) +P 𝑄))) | 
| 59 | 58 | rexbidva 2494 | 
. . . 4
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) → (∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅) ↔ ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P (𝑄 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
((𝐹‘𝑅) +P 𝑄))) | 
| 60 | 34, 59 | mpbid 147 | 
. . 3
⊢ ((𝜑 ∧ (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅)) → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P (𝑄 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
((𝐹‘𝑅) +P 𝑄)) | 
| 61 | 60 | ex 115 | 
. 2
⊢ (𝜑 → ((𝐿 +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P (𝐹‘𝑅) → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P (𝑄 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
((𝐹‘𝑅) +P 𝑄))) | 
| 62 | 24, 61 | sylbird 170 | 
1
⊢ (𝜑 → (((𝐿 +P 𝑄) +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉)<P
((𝐹‘𝑅) +P 𝑄) → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) +P (𝑄 +P
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑅, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑅, 1o〉]
~Q ) <Q 𝑞}〉))<P
((𝐹‘𝑅) +P 𝑄))) |