| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrbien | GIF version | ||
| Description: Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.) |
| Ref | Expression |
|---|---|
| umgrbi.x | ⊢ 𝑋 ∈ 𝑉 |
| umgrbi.y | ⊢ 𝑌 ∈ 𝑉 |
| umgrbi.n | ⊢ 𝑋 ≠ 𝑌 |
| Ref | Expression |
|---|---|
| umgrbien | ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrbi.x | . . . 4 ⊢ 𝑋 ∈ 𝑉 | |
| 2 | umgrbi.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
| 3 | prssi 3794 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
| 4 | 1, 2, 3 | mp2an 426 | . . 3 ⊢ {𝑋, 𝑌} ⊆ 𝑉 |
| 5 | prexg 4260 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ∈ V) | |
| 6 | 1, 2, 5 | mp2an 426 | . . . 4 ⊢ {𝑋, 𝑌} ∈ V |
| 7 | 6 | elpw 3624 | . . 3 ⊢ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ↔ {𝑋, 𝑌} ⊆ 𝑉) |
| 8 | 4, 7 | mpbir 146 | . 2 ⊢ {𝑋, 𝑌} ∈ 𝒫 𝑉 |
| 9 | umgrbi.n | . . 3 ⊢ 𝑋 ≠ 𝑌 | |
| 10 | pr2ne 7312 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ({𝑋, 𝑌} ≈ 2o ↔ 𝑋 ≠ 𝑌)) | |
| 11 | 1, 2, 10 | mp2an 426 | . . 3 ⊢ ({𝑋, 𝑌} ≈ 2o ↔ 𝑋 ≠ 𝑌) |
| 12 | 9, 11 | mpbir 146 | . 2 ⊢ {𝑋, 𝑌} ≈ 2o |
| 13 | breq1 4051 | . . 3 ⊢ (𝑥 = {𝑋, 𝑌} → (𝑥 ≈ 2o ↔ {𝑋, 𝑌} ≈ 2o)) | |
| 14 | 13 | elrab 2931 | . 2 ⊢ ({𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ {𝑋, 𝑌} ≈ 2o)) |
| 15 | 8, 12, 14 | mpbir2an 945 | 1 ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 ≠ wne 2377 {crab 2489 Vcvv 2773 ⊆ wss 3168 𝒫 cpw 3618 {cpr 3636 class class class wbr 4048 2oc2o 6506 ≈ cen 6835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |