![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climlec2 | GIF version |
Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
clim2iser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climlec2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climlec2.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
climlec2.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐵) |
climlec2.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climlec2.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climlec2 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2iser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climlec2.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climlec2.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | 3 | recnd 8050 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | 0z 9331 | . . 3 ⊢ 0 ∈ ℤ | |
6 | uzssz 9615 | . . . 4 ⊢ (ℤ≥‘0) ⊆ ℤ | |
7 | zex 9329 | . . . 4 ⊢ ℤ ∈ V | |
8 | 6, 7 | climconst2 11437 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐴}) ⇝ 𝐴) |
9 | 4, 5, 8 | sylancl 413 | . 2 ⊢ (𝜑 → (ℤ × {𝐴}) ⇝ 𝐴) |
10 | climlec2.4 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐵) | |
11 | eluzelz 9604 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
12 | 11, 1 | eleq2s 2288 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
13 | fvconst2g 5773 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐴})‘𝑘) = 𝐴) | |
14 | 3, 12, 13 | syl2an 289 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐴})‘𝑘) = 𝐴) |
15 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
16 | 14, 15 | eqeltrd 2270 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐴})‘𝑘) ∈ ℝ) |
17 | climlec2.5 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
18 | climlec2.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ (𝐹‘𝑘)) | |
19 | 14, 18 | eqbrtrd 4052 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐴})‘𝑘) ≤ (𝐹‘𝑘)) |
20 | 1, 2, 9, 10, 16, 17, 19 | climle 11480 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {csn 3619 class class class wbr 4030 × cxp 4658 ‘cfv 5255 ℂcc 7872 ℝcr 7873 0cc0 7874 ≤ cle 8057 ℤcz 9320 ℤ≥cuz 9595 ⇝ cli 11424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 |
This theorem is referenced by: climub 11490 |
Copyright terms: Public domain | W3C validator |