ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climmulc2 GIF version

Theorem climmulc2 11717
Description: Limit of a sequence multiplied by a constant 𝐶. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climaddc1.5 (𝜑𝐶 ∈ ℂ)
climaddc1.6 (𝜑𝐺𝑊)
climaddc1.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climmulc2.h ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
Assertion
Ref Expression
climmulc2 (𝜑𝐺 ⇝ (𝐶 · 𝐴))
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climmulc2
StepHypRef Expression
1 climadd.1 . 2 𝑍 = (ℤ𝑀)
2 climadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climaddc1.5 . . 3 (𝜑𝐶 ∈ ℂ)
4 0z 9403 . . 3 0 ∈ ℤ
5 uzssz 9688 . . . 4 (ℤ‘0) ⊆ ℤ
6 zex 9401 . . . 4 ℤ ∈ V
75, 6climconst2 11677 . . 3 ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶)
83, 4, 7sylancl 413 . 2 (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶)
9 climaddc1.6 . 2 (𝜑𝐺𝑊)
10 climadd.4 . 2 (𝜑𝐹𝐴)
11 eluzelz 9677 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1211, 1eleq2s 2301 . . . 4 (𝑘𝑍𝑘 ∈ ℤ)
13 fvconst2g 5811 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
143, 12, 13syl2an 289 . . 3 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
153adantr 276 . . 3 ((𝜑𝑘𝑍) → 𝐶 ∈ ℂ)
1614, 15eqeltrd 2283 . 2 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ)
17 climaddc1.7 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climmulc2.h . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
1914oveq1d 5972 . . 3 ((𝜑𝑘𝑍) → (((ℤ × {𝐶})‘𝑘) · (𝐹𝑘)) = (𝐶 · (𝐹𝑘)))
2018, 19eqtr4d 2242 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = (((ℤ × {𝐶})‘𝑘) · (𝐹𝑘)))
211, 2, 8, 9, 10, 16, 17, 20climmul 11713 1 (𝜑𝐺 ⇝ (𝐶 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {csn 3638   class class class wbr 4051   × cxp 4681  cfv 5280  (class class class)co 5957  cc 7943  0cc0 7945   · cmul 7950  cz 9392  cuz 9668  cli 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665
This theorem is referenced by:  isermulc2  11726  climcvg1nlem  11735  geolim  11897  geo2lim  11902  clim2prod  11925  clim2divap  11926
  Copyright terms: Public domain W3C validator