Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2np3bcnp1 Structured version   Visualization version   GIF version

Theorem 2np3bcnp1 39630
Description: Part of induction step for 2ap1caineq 39631. (Contributed by metakunt, 8-Jun-2024.)
Hypothesis
Ref Expression
2np3bcnp1.1 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
2np3bcnp1 (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))

Proof of Theorem 2np3bcnp1
StepHypRef Expression
1 2cnd 11737 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
2 2np3bcnp1.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
32nn0cnd 11981 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
4 1cnd 10659 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
51, 3, 4adddid 10688 . . . . . . 7 (𝜑 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
6 2t1e2 11822 . . . . . . . 8 (2 · 1) = 2
76oveq2i 7154 . . . . . . 7 ((2 · 𝑁) + (2 · 1)) = ((2 · 𝑁) + 2)
85, 7eqtrdi 2810 . . . . . 6 (𝜑 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + 2))
98oveq1d 7158 . . . . 5 (𝜑 → ((2 · (𝑁 + 1)) + 1) = (((2 · 𝑁) + 2) + 1))
101, 3mulcld 10684 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
1110, 1, 4addassd 10686 . . . . 5 (𝜑 → (((2 · 𝑁) + 2) + 1) = ((2 · 𝑁) + (2 + 1)))
129, 11eqtrd 2794 . . . 4 (𝜑 → ((2 · (𝑁 + 1)) + 1) = ((2 · 𝑁) + (2 + 1)))
13 2p1e3 11801 . . . . . 6 (2 + 1) = 3
1413a1i 11 . . . . 5 (𝜑 → (2 + 1) = 3)
1514oveq2d 7159 . . . 4 (𝜑 → ((2 · 𝑁) + (2 + 1)) = ((2 · 𝑁) + 3))
1612, 15eqtrd 2794 . . 3 (𝜑 → ((2 · (𝑁 + 1)) + 1) = ((2 · 𝑁) + 3))
1716oveq1d 7158 . 2 (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 3)C(𝑁 + 1)))
18 0zd 12017 . . . . 5 (𝜑 → 0 ∈ ℤ)
19 2z 12038 . . . . . . . 8 2 ∈ ℤ
2019a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
212nn0zd 12109 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2220, 21zmulcld 12117 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
23 3z 12039 . . . . . . 7 3 ∈ ℤ
2423a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℤ)
2522, 24zaddcld 12115 . . . . 5 (𝜑 → ((2 · 𝑁) + 3) ∈ ℤ)
2621peano2zd 12114 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℤ)
272nn0red 11980 . . . . . 6 (𝜑𝑁 ∈ ℝ)
28 1red 10665 . . . . . 6 (𝜑 → 1 ∈ ℝ)
292nn0ge0d 11982 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
30 0le1 11186 . . . . . . 7 0 ≤ 1
3130a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
3227, 28, 29, 31addge0d 11239 . . . . 5 (𝜑 → 0 ≤ (𝑁 + 1))
33 2re 11733 . . . . . . . 8 2 ∈ ℝ
3433a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
3534, 27remulcld 10694 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
36 3re 11739 . . . . . . 7 3 ∈ ℝ
3736a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
38 1le2 11868 . . . . . . . 8 1 ≤ 2
3938a1i 11 . . . . . . 7 (𝜑 → 1 ≤ 2)
4027, 34, 29, 39lemulge12d 11601 . . . . . 6 (𝜑𝑁 ≤ (2 · 𝑁))
41 1le3 11871 . . . . . . 7 1 ≤ 3
4241a1i 11 . . . . . 6 (𝜑 → 1 ≤ 3)
4327, 28, 35, 37, 40, 42le2addd 11282 . . . . 5 (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 3))
4418, 25, 26, 32, 43elfzd 12932 . . . 4 (𝜑 → (𝑁 + 1) ∈ (0...((2 · 𝑁) + 3)))
45 bcval2 13700 . . . 4 ((𝑁 + 1) ∈ (0...((2 · 𝑁) + 3)) → (((2 · 𝑁) + 3)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 3)) / ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
4644, 45syl 17 . . 3 (𝜑 → (((2 · 𝑁) + 3)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 3)) / ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
4737recnd 10692 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
4810, 47, 3, 4addsub4d 11067 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 3) − (𝑁 + 1)) = (((2 · 𝑁) − 𝑁) + (3 − 1)))
49 2txmxeqx 11799 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((2 · 𝑁) − 𝑁) = 𝑁)
503, 49syl 17 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) − 𝑁) = 𝑁)
51 3m1e2 11787 . . . . . . . . . 10 (3 − 1) = 2
5251a1i 11 . . . . . . . . 9 (𝜑 → (3 − 1) = 2)
5350, 52oveq12d 7161 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − 𝑁) + (3 − 1)) = (𝑁 + 2))
5448, 53eqtrd 2794 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 3) − (𝑁 + 1)) = (𝑁 + 2))
5554fveq2d 6655 . . . . . 6 (𝜑 → (!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) = (!‘(𝑁 + 2)))
5655oveq1d 7158 . . . . 5 (𝜑 → ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1))) = ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1))))
5756oveq2d 7159 . . . 4 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1)))))
58 2nn0 11936 . . . . . . . . . . 11 2 ∈ ℕ0
5958a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ0)
602, 59nn0addcld 11983 . . . . . . . . 9 (𝜑 → (𝑁 + 2) ∈ ℕ0)
6160faccld 13679 . . . . . . . 8 (𝜑 → (!‘(𝑁 + 2)) ∈ ℕ)
6261nncnd 11675 . . . . . . 7 (𝜑 → (!‘(𝑁 + 2)) ∈ ℂ)
63 1nn0 11935 . . . . . . . . . . 11 1 ∈ ℕ0
6463a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ0)
652, 64nn0addcld 11983 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
6665faccld 13679 . . . . . . . 8 (𝜑 → (!‘(𝑁 + 1)) ∈ ℕ)
6766nncnd 11675 . . . . . . 7 (𝜑 → (!‘(𝑁 + 1)) ∈ ℂ)
6862, 67mulcomd 10685 . . . . . 6 (𝜑 → ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1))) = ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2))))
6968oveq2d 7159 . . . . 5 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))))
7010, 4, 1addassd 10686 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) + 1) + 2) = ((2 · 𝑁) + (1 + 2)))
71 1p2e3 11802 . . . . . . . . . . . . 13 (1 + 2) = 3
7271oveq2i 7154 . . . . . . . . . . . 12 ((2 · 𝑁) + (1 + 2)) = ((2 · 𝑁) + 3)
7370, 72eqtrdi 2810 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) + 1) + 2) = ((2 · 𝑁) + 3))
7473fveq2d 6655 . . . . . . . . . 10 (𝜑 → (!‘(((2 · 𝑁) + 1) + 2)) = (!‘((2 · 𝑁) + 3)))
7574eqcomd 2765 . . . . . . . . 9 (𝜑 → (!‘((2 · 𝑁) + 3)) = (!‘(((2 · 𝑁) + 1) + 2)))
7659, 2nn0mulcld 11984 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ0)
7776, 64nn0addcld 11983 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) + 1) ∈ ℕ0)
78 facp2 39629 . . . . . . . . . 10 (((2 · 𝑁) + 1) ∈ ℕ0 → (!‘(((2 · 𝑁) + 1) + 2)) = ((!‘((2 · 𝑁) + 1)) · ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2))))
7977, 78syl 17 . . . . . . . . 9 (𝜑 → (!‘(((2 · 𝑁) + 1) + 2)) = ((!‘((2 · 𝑁) + 1)) · ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2))))
8075, 79eqtrd 2794 . . . . . . . 8 (𝜑 → (!‘((2 · 𝑁) + 3)) = ((!‘((2 · 𝑁) + 1)) · ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2))))
8110, 4, 4addassd 10686 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
82 1p1e2 11784 . . . . . . . . . . . . 13 (1 + 1) = 2
8382a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 + 1) = 2)
8483oveq2d 7159 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) + (1 + 1)) = ((2 · 𝑁) + 2))
8581, 84eqtrd 2794 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + 2))
8671a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 + 2) = 3)
8786oveq2d 7159 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) + (1 + 2)) = ((2 · 𝑁) + 3))
8870, 87eqtrd 2794 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 1) + 2) = ((2 · 𝑁) + 3))
8985, 88oveq12d 7161 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2)) = (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)))
9089oveq2d 7159 . . . . . . . 8 (𝜑 → ((!‘((2 · 𝑁) + 1)) · ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2))) = ((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))))
9180, 90eqtrd 2794 . . . . . . 7 (𝜑 → (!‘((2 · 𝑁) + 3)) = ((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))))
9291oveq1d 7158 . . . . . 6 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))) = (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))))
93 facp2 39629 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))
942, 93syl 17 . . . . . . . . 9 (𝜑 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))
9594oveq2d 7159 . . . . . . . 8 (𝜑 → ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2))) = ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))))
9695oveq2d 7159 . . . . . . 7 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))) = (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))))
972faccld 13679 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) ∈ ℕ)
9897nncnd 11675 . . . . . . . . . . 11 (𝜑 → (!‘𝑁) ∈ ℂ)
993, 4addcld 10683 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℂ)
1003, 1addcld 10683 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 2) ∈ ℂ)
10199, 100mulcld 10684 . . . . . . . . . . 11 (𝜑 → ((𝑁 + 1) · (𝑁 + 2)) ∈ ℂ)
10267, 98, 101mulassd 10687 . . . . . . . . . 10 (𝜑 → (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2))) = ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))))
103102eqcomd 2765 . . . . . . . . 9 (𝜑 → ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) = (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2))))
104103oveq2d 7159 . . . . . . . 8 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))) = (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2)))))
10577faccld 13679 . . . . . . . . . . . 12 (𝜑 → (!‘((2 · 𝑁) + 1)) ∈ ℕ)
106105nncnd 11675 . . . . . . . . . . 11 (𝜑 → (!‘((2 · 𝑁) + 1)) ∈ ℂ)
10767, 98mulcld 10684 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) ∈ ℂ)
10810, 1addcld 10683 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) + 2) ∈ ℂ)
10910, 47addcld 10683 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) + 3) ∈ ℂ)
110108, 109mulcld 10684 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) ∈ ℂ)
11166nnne0d 11709 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑁 + 1)) ≠ 0)
11297nnne0d 11709 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) ≠ 0)
11367, 98, 111, 112mulne0d 11315 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) ≠ 0)
114 0red 10667 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
11527, 28readdcld 10693 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℝ)
11627ltp1d 11593 . . . . . . . . . . . . . . 15 (𝜑𝑁 < (𝑁 + 1))
117114, 27, 115, 29, 116lelttrd 10821 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑁 + 1))
118114, 117ltned 10799 . . . . . . . . . . . . 13 (𝜑 → 0 ≠ (𝑁 + 1))
119118necomd 3004 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ≠ 0)
12027, 34readdcld 10693 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 2) ∈ ℝ)
121 2rp 12420 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
122121a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
12327, 122ltaddrpd 12490 . . . . . . . . . . . . . . 15 (𝜑𝑁 < (𝑁 + 2))
124114, 27, 120, 29, 123lelttrd 10821 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑁 + 2))
125114, 124ltned 10799 . . . . . . . . . . . . 13 (𝜑 → 0 ≠ (𝑁 + 2))
126125necomd 3004 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 2) ≠ 0)
12799, 100, 119, 126mulne0d 11315 . . . . . . . . . . 11 (𝜑 → ((𝑁 + 1) · (𝑁 + 2)) ≠ 0)
128106, 107, 110, 101, 113, 127divmuldivd 11480 . . . . . . . . . 10 (𝜑 → (((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))) · ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2)))) = (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2)))))
129128eqcomd 2765 . . . . . . . . 9 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2)))) = (((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))) · ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2)))))
13022peano2zd 12114 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
13135, 28readdcld 10693 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) + 1) ∈ ℝ)
13235lep1d 11594 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ≤ ((2 · 𝑁) + 1))
13327, 35, 131, 40, 132letrd 10820 . . . . . . . . . . . . . 14 (𝜑𝑁 ≤ ((2 · 𝑁) + 1))
13418, 130, 21, 29, 133elfzd 12932 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (0...((2 · 𝑁) + 1)))
135 bcval2 13700 . . . . . . . . . . . . 13 (𝑁 ∈ (0...((2 · 𝑁) + 1)) → (((2 · 𝑁) + 1)C𝑁) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − 𝑁)) · (!‘𝑁))))
136134, 135syl 17 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) + 1)C𝑁) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − 𝑁)) · (!‘𝑁))))
13710, 4, 3addsubd 11041 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) + 1) − 𝑁) = (((2 · 𝑁) − 𝑁) + 1))
13850oveq1d 7158 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) − 𝑁) + 1) = (𝑁 + 1))
139137, 138eqtrd 2794 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) + 1) − 𝑁) = (𝑁 + 1))
140139fveq2d 6655 . . . . . . . . . . . . . 14 (𝜑 → (!‘(((2 · 𝑁) + 1) − 𝑁)) = (!‘(𝑁 + 1)))
141140oveq1d 7158 . . . . . . . . . . . . 13 (𝜑 → ((!‘(((2 · 𝑁) + 1) − 𝑁)) · (!‘𝑁)) = ((!‘(𝑁 + 1)) · (!‘𝑁)))
142141oveq2d 7159 . . . . . . . . . . . 12 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − 𝑁)) · (!‘𝑁))) = ((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))))
143136, 142eqtrd 2794 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) + 1)C𝑁) = ((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))))
144143eqcomd 2765 . . . . . . . . . 10 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))) = (((2 · 𝑁) + 1)C𝑁))
145108, 99, 109, 100, 119, 126divmuldivd 11480 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) + 2) / (𝑁 + 1)) · (((2 · 𝑁) + 3) / (𝑁 + 2))) = ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2))))
146145eqcomd 2765 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2))) = ((((2 · 𝑁) + 2) / (𝑁 + 1)) · (((2 · 𝑁) + 3) / (𝑁 + 2))))
1478eqcomd 2765 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝑁) + 2) = (2 · (𝑁 + 1)))
148147oveq1d 7158 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) + 2) / (𝑁 + 1)) = ((2 · (𝑁 + 1)) / (𝑁 + 1)))
1491, 99, 119divcan4d 11445 . . . . . . . . . . . . 13 (𝜑 → ((2 · (𝑁 + 1)) / (𝑁 + 1)) = 2)
150148, 149eqtrd 2794 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) + 2) / (𝑁 + 1)) = 2)
151 eqidd 2760 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) + 3) / (𝑁 + 2)) = (((2 · 𝑁) + 3) / (𝑁 + 2)))
152150, 151oveq12d 7161 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) + 2) / (𝑁 + 1)) · (((2 · 𝑁) + 3) / (𝑁 + 2))) = (2 · (((2 · 𝑁) + 3) / (𝑁 + 2))))
153146, 152eqtrd 2794 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2))) = (2 · (((2 · 𝑁) + 3) / (𝑁 + 2))))
154144, 153oveq12d 7161 . . . . . . . . 9 (𝜑 → (((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))) · ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
155129, 154eqtrd 2794 . . . . . . . 8 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
156104, 155eqtrd 2794 . . . . . . 7 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
15796, 156eqtrd 2794 . . . . . 6 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
15892, 157eqtrd 2794 . . . . 5 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
15969, 158eqtrd 2794 . . . 4 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
16057, 159eqtrd 2794 . . 3 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
16146, 160eqtrd 2794 . 2 (𝜑 → (((2 · 𝑁) + 3)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
16217, 161eqtrd 2794 1 (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112   class class class wbr 5025  cfv 6328  (class class class)co 7143  cc 10558  cr 10559  0cc0 10560  1c1 10561   + caddc 10563   · cmul 10565  cle 10699  cmin 10893   / cdiv 11320  2c2 11714  3c3 11715  0cn0 11919  cz 12005  +crp 12415  ...cfz 12924  !cfa 13668  Ccbc 13697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-fz 12925  df-seq 13404  df-fac 13669  df-bc 13698
This theorem is referenced by:  2ap1caineq  39631
  Copyright terms: Public domain W3C validator