Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2np3bcnp1 Structured version   Visualization version   GIF version

Theorem 2np3bcnp1 40028
Description: Part of induction step for 2ap1caineq 40029. (Contributed by metakunt, 8-Jun-2024.)
Hypothesis
Ref Expression
2np3bcnp1.1 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
2np3bcnp1 (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))

Proof of Theorem 2np3bcnp1
StepHypRef Expression
1 2cnd 11981 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
2 2np3bcnp1.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
32nn0cnd 12225 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
4 1cnd 10901 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
51, 3, 4adddid 10930 . . . . . . 7 (𝜑 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
6 2t1e2 12066 . . . . . . . 8 (2 · 1) = 2
76oveq2i 7266 . . . . . . 7 ((2 · 𝑁) + (2 · 1)) = ((2 · 𝑁) + 2)
85, 7eqtrdi 2795 . . . . . 6 (𝜑 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + 2))
98oveq1d 7270 . . . . 5 (𝜑 → ((2 · (𝑁 + 1)) + 1) = (((2 · 𝑁) + 2) + 1))
101, 3mulcld 10926 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
1110, 1, 4addassd 10928 . . . . 5 (𝜑 → (((2 · 𝑁) + 2) + 1) = ((2 · 𝑁) + (2 + 1)))
129, 11eqtrd 2778 . . . 4 (𝜑 → ((2 · (𝑁 + 1)) + 1) = ((2 · 𝑁) + (2 + 1)))
13 2p1e3 12045 . . . . . 6 (2 + 1) = 3
1413a1i 11 . . . . 5 (𝜑 → (2 + 1) = 3)
1514oveq2d 7271 . . . 4 (𝜑 → ((2 · 𝑁) + (2 + 1)) = ((2 · 𝑁) + 3))
1612, 15eqtrd 2778 . . 3 (𝜑 → ((2 · (𝑁 + 1)) + 1) = ((2 · 𝑁) + 3))
1716oveq1d 7270 . 2 (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 3)C(𝑁 + 1)))
18 0zd 12261 . . . . 5 (𝜑 → 0 ∈ ℤ)
19 2z 12282 . . . . . . . 8 2 ∈ ℤ
2019a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
212nn0zd 12353 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2220, 21zmulcld 12361 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℤ)
23 3z 12283 . . . . . . 7 3 ∈ ℤ
2423a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℤ)
2522, 24zaddcld 12359 . . . . 5 (𝜑 → ((2 · 𝑁) + 3) ∈ ℤ)
2621peano2zd 12358 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℤ)
272nn0red 12224 . . . . . 6 (𝜑𝑁 ∈ ℝ)
28 1red 10907 . . . . . 6 (𝜑 → 1 ∈ ℝ)
292nn0ge0d 12226 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
30 0le1 11428 . . . . . . 7 0 ≤ 1
3130a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
3227, 28, 29, 31addge0d 11481 . . . . 5 (𝜑 → 0 ≤ (𝑁 + 1))
33 2re 11977 . . . . . . . 8 2 ∈ ℝ
3433a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
3534, 27remulcld 10936 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
36 3re 11983 . . . . . . 7 3 ∈ ℝ
3736a1i 11 . . . . . 6 (𝜑 → 3 ∈ ℝ)
38 1le2 12112 . . . . . . . 8 1 ≤ 2
3938a1i 11 . . . . . . 7 (𝜑 → 1 ≤ 2)
4027, 34, 29, 39lemulge12d 11843 . . . . . 6 (𝜑𝑁 ≤ (2 · 𝑁))
41 1le3 12115 . . . . . . 7 1 ≤ 3
4241a1i 11 . . . . . 6 (𝜑 → 1 ≤ 3)
4327, 28, 35, 37, 40, 42le2addd 11524 . . . . 5 (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 3))
4418, 25, 26, 32, 43elfzd 13176 . . . 4 (𝜑 → (𝑁 + 1) ∈ (0...((2 · 𝑁) + 3)))
45 bcval2 13947 . . . 4 ((𝑁 + 1) ∈ (0...((2 · 𝑁) + 3)) → (((2 · 𝑁) + 3)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 3)) / ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
4644, 45syl 17 . . 3 (𝜑 → (((2 · 𝑁) + 3)C(𝑁 + 1)) = ((!‘((2 · 𝑁) + 3)) / ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1)))))
4737recnd 10934 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
4810, 47, 3, 4addsub4d 11309 . . . . . . . 8 (𝜑 → (((2 · 𝑁) + 3) − (𝑁 + 1)) = (((2 · 𝑁) − 𝑁) + (3 − 1)))
49 2txmxeqx 12043 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((2 · 𝑁) − 𝑁) = 𝑁)
503, 49syl 17 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) − 𝑁) = 𝑁)
51 3m1e2 12031 . . . . . . . . . 10 (3 − 1) = 2
5251a1i 11 . . . . . . . . 9 (𝜑 → (3 − 1) = 2)
5350, 52oveq12d 7273 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − 𝑁) + (3 − 1)) = (𝑁 + 2))
5448, 53eqtrd 2778 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 3) − (𝑁 + 1)) = (𝑁 + 2))
5554fveq2d 6760 . . . . . 6 (𝜑 → (!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) = (!‘(𝑁 + 2)))
5655oveq1d 7270 . . . . 5 (𝜑 → ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1))) = ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1))))
5756oveq2d 7271 . . . 4 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1)))))
58 2nn0 12180 . . . . . . . . . . 11 2 ∈ ℕ0
5958a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ0)
602, 59nn0addcld 12227 . . . . . . . . 9 (𝜑 → (𝑁 + 2) ∈ ℕ0)
6160faccld 13926 . . . . . . . 8 (𝜑 → (!‘(𝑁 + 2)) ∈ ℕ)
6261nncnd 11919 . . . . . . 7 (𝜑 → (!‘(𝑁 + 2)) ∈ ℂ)
63 1nn0 12179 . . . . . . . . . . 11 1 ∈ ℕ0
6463a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ0)
652, 64nn0addcld 12227 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
6665faccld 13926 . . . . . . . 8 (𝜑 → (!‘(𝑁 + 1)) ∈ ℕ)
6766nncnd 11919 . . . . . . 7 (𝜑 → (!‘(𝑁 + 1)) ∈ ℂ)
6862, 67mulcomd 10927 . . . . . 6 (𝜑 → ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1))) = ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2))))
6968oveq2d 7271 . . . . 5 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1)))) = ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))))
7010, 4, 1addassd 10928 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) + 1) + 2) = ((2 · 𝑁) + (1 + 2)))
71 1p2e3 12046 . . . . . . . . . . . . 13 (1 + 2) = 3
7271oveq2i 7266 . . . . . . . . . . . 12 ((2 · 𝑁) + (1 + 2)) = ((2 · 𝑁) + 3)
7370, 72eqtrdi 2795 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) + 1) + 2) = ((2 · 𝑁) + 3))
7473fveq2d 6760 . . . . . . . . . 10 (𝜑 → (!‘(((2 · 𝑁) + 1) + 2)) = (!‘((2 · 𝑁) + 3)))
7574eqcomd 2744 . . . . . . . . 9 (𝜑 → (!‘((2 · 𝑁) + 3)) = (!‘(((2 · 𝑁) + 1) + 2)))
7659, 2nn0mulcld 12228 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℕ0)
7776, 64nn0addcld 12227 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) + 1) ∈ ℕ0)
78 facp2 40027 . . . . . . . . . 10 (((2 · 𝑁) + 1) ∈ ℕ0 → (!‘(((2 · 𝑁) + 1) + 2)) = ((!‘((2 · 𝑁) + 1)) · ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2))))
7977, 78syl 17 . . . . . . . . 9 (𝜑 → (!‘(((2 · 𝑁) + 1) + 2)) = ((!‘((2 · 𝑁) + 1)) · ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2))))
8075, 79eqtrd 2778 . . . . . . . 8 (𝜑 → (!‘((2 · 𝑁) + 3)) = ((!‘((2 · 𝑁) + 1)) · ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2))))
8110, 4, 4addassd 10928 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
82 1p1e2 12028 . . . . . . . . . . . . 13 (1 + 1) = 2
8382a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 + 1) = 2)
8483oveq2d 7271 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) + (1 + 1)) = ((2 · 𝑁) + 2))
8581, 84eqtrd 2778 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + 2))
8671a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 + 2) = 3)
8786oveq2d 7271 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) + (1 + 2)) = ((2 · 𝑁) + 3))
8870, 87eqtrd 2778 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) + 1) + 2) = ((2 · 𝑁) + 3))
8985, 88oveq12d 7273 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2)) = (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)))
9089oveq2d 7271 . . . . . . . 8 (𝜑 → ((!‘((2 · 𝑁) + 1)) · ((((2 · 𝑁) + 1) + 1) · (((2 · 𝑁) + 1) + 2))) = ((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))))
9180, 90eqtrd 2778 . . . . . . 7 (𝜑 → (!‘((2 · 𝑁) + 3)) = ((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))))
9291oveq1d 7270 . . . . . 6 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))) = (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))))
93 facp2 40027 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))
942, 93syl 17 . . . . . . . . 9 (𝜑 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))
9594oveq2d 7271 . . . . . . . 8 (𝜑 → ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2))) = ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))))
9695oveq2d 7271 . . . . . . 7 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))) = (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))))
972faccld 13926 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) ∈ ℕ)
9897nncnd 11919 . . . . . . . . . . 11 (𝜑 → (!‘𝑁) ∈ ℂ)
993, 4addcld 10925 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℂ)
1003, 1addcld 10925 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 2) ∈ ℂ)
10199, 100mulcld 10926 . . . . . . . . . . 11 (𝜑 → ((𝑁 + 1) · (𝑁 + 2)) ∈ ℂ)
10267, 98, 101mulassd 10929 . . . . . . . . . 10 (𝜑 → (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2))) = ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))))
103102eqcomd 2744 . . . . . . . . 9 (𝜑 → ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) = (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2))))
104103oveq2d 7271 . . . . . . . 8 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))) = (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2)))))
10577faccld 13926 . . . . . . . . . . . 12 (𝜑 → (!‘((2 · 𝑁) + 1)) ∈ ℕ)
106105nncnd 11919 . . . . . . . . . . 11 (𝜑 → (!‘((2 · 𝑁) + 1)) ∈ ℂ)
10767, 98mulcld 10926 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) ∈ ℂ)
10810, 1addcld 10925 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) + 2) ∈ ℂ)
10910, 47addcld 10925 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) + 3) ∈ ℂ)
110108, 109mulcld 10926 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) ∈ ℂ)
11166nnne0d 11953 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑁 + 1)) ≠ 0)
11297nnne0d 11953 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) ≠ 0)
11367, 98, 111, 112mulne0d 11557 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑁 + 1)) · (!‘𝑁)) ≠ 0)
114 0red 10909 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
11527, 28readdcld 10935 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℝ)
11627ltp1d 11835 . . . . . . . . . . . . . . 15 (𝜑𝑁 < (𝑁 + 1))
117114, 27, 115, 29, 116lelttrd 11063 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑁 + 1))
118114, 117ltned 11041 . . . . . . . . . . . . 13 (𝜑 → 0 ≠ (𝑁 + 1))
119118necomd 2998 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ≠ 0)
12027, 34readdcld 10935 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 2) ∈ ℝ)
121 2rp 12664 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
122121a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
12327, 122ltaddrpd 12734 . . . . . . . . . . . . . . 15 (𝜑𝑁 < (𝑁 + 2))
124114, 27, 120, 29, 123lelttrd 11063 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑁 + 2))
125114, 124ltned 11041 . . . . . . . . . . . . 13 (𝜑 → 0 ≠ (𝑁 + 2))
126125necomd 2998 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 2) ≠ 0)
12799, 100, 119, 126mulne0d 11557 . . . . . . . . . . 11 (𝜑 → ((𝑁 + 1) · (𝑁 + 2)) ≠ 0)
128106, 107, 110, 101, 113, 127divmuldivd 11722 . . . . . . . . . 10 (𝜑 → (((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))) · ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2)))) = (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2)))))
129128eqcomd 2744 . . . . . . . . 9 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2)))) = (((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))) · ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2)))))
13022peano2zd 12358 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
13135, 28readdcld 10935 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) + 1) ∈ ℝ)
13235lep1d 11836 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝑁) ≤ ((2 · 𝑁) + 1))
13327, 35, 131, 40, 132letrd 11062 . . . . . . . . . . . . . 14 (𝜑𝑁 ≤ ((2 · 𝑁) + 1))
13418, 130, 21, 29, 133elfzd 13176 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (0...((2 · 𝑁) + 1)))
135 bcval2 13947 . . . . . . . . . . . . 13 (𝑁 ∈ (0...((2 · 𝑁) + 1)) → (((2 · 𝑁) + 1)C𝑁) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − 𝑁)) · (!‘𝑁))))
136134, 135syl 17 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) + 1)C𝑁) = ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − 𝑁)) · (!‘𝑁))))
13710, 4, 3addsubd 11283 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) + 1) − 𝑁) = (((2 · 𝑁) − 𝑁) + 1))
13850oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 · 𝑁) − 𝑁) + 1) = (𝑁 + 1))
139137, 138eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝑁) + 1) − 𝑁) = (𝑁 + 1))
140139fveq2d 6760 . . . . . . . . . . . . . 14 (𝜑 → (!‘(((2 · 𝑁) + 1) − 𝑁)) = (!‘(𝑁 + 1)))
141140oveq1d 7270 . . . . . . . . . . . . 13 (𝜑 → ((!‘(((2 · 𝑁) + 1) − 𝑁)) · (!‘𝑁)) = ((!‘(𝑁 + 1)) · (!‘𝑁)))
142141oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘(((2 · 𝑁) + 1) − 𝑁)) · (!‘𝑁))) = ((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))))
143136, 142eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) + 1)C𝑁) = ((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))))
144143eqcomd 2744 . . . . . . . . . 10 (𝜑 → ((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))) = (((2 · 𝑁) + 1)C𝑁))
145108, 99, 109, 100, 119, 126divmuldivd 11722 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) + 2) / (𝑁 + 1)) · (((2 · 𝑁) + 3) / (𝑁 + 2))) = ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2))))
146145eqcomd 2744 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2))) = ((((2 · 𝑁) + 2) / (𝑁 + 1)) · (((2 · 𝑁) + 3) / (𝑁 + 2))))
1478eqcomd 2744 . . . . . . . . . . . . . 14 (𝜑 → ((2 · 𝑁) + 2) = (2 · (𝑁 + 1)))
148147oveq1d 7270 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) + 2) / (𝑁 + 1)) = ((2 · (𝑁 + 1)) / (𝑁 + 1)))
1491, 99, 119divcan4d 11687 . . . . . . . . . . . . 13 (𝜑 → ((2 · (𝑁 + 1)) / (𝑁 + 1)) = 2)
150148, 149eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) + 2) / (𝑁 + 1)) = 2)
151 eqidd 2739 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) + 3) / (𝑁 + 2)) = (((2 · 𝑁) + 3) / (𝑁 + 2)))
152150, 151oveq12d 7273 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) + 2) / (𝑁 + 1)) · (((2 · 𝑁) + 3) / (𝑁 + 2))) = (2 · (((2 · 𝑁) + 3) / (𝑁 + 2))))
153146, 152eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2))) = (2 · (((2 · 𝑁) + 3) / (𝑁 + 2))))
154144, 153oveq12d 7273 . . . . . . . . 9 (𝜑 → (((!‘((2 · 𝑁) + 1)) / ((!‘(𝑁 + 1)) · (!‘𝑁))) · ((((2 · 𝑁) + 2) · ((2 · 𝑁) + 3)) / ((𝑁 + 1) · (𝑁 + 2)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
155129, 154eqtrd 2778 . . . . . . . 8 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / (((!‘(𝑁 + 1)) · (!‘𝑁)) · ((𝑁 + 1) · (𝑁 + 2)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
156104, 155eqtrd 2778 . . . . . . 7 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2))))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
15796, 156eqtrd 2778 . . . . . 6 (𝜑 → (((!‘((2 · 𝑁) + 1)) · (((2 · 𝑁) + 2) · ((2 · 𝑁) + 3))) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
15892, 157eqtrd 2778 . . . . 5 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 1)) · (!‘(𝑁 + 2)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
15969, 158eqtrd 2778 . . . 4 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(𝑁 + 2)) · (!‘(𝑁 + 1)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
16057, 159eqtrd 2778 . . 3 (𝜑 → ((!‘((2 · 𝑁) + 3)) / ((!‘(((2 · 𝑁) + 3) − (𝑁 + 1))) · (!‘(𝑁 + 1)))) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
16146, 160eqtrd 2778 . 2 (𝜑 → (((2 · 𝑁) + 3)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
16217, 161eqtrd 2778 1 (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  3c3 11959  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168  !cfa 13915  Ccbc 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945
This theorem is referenced by:  2ap1caineq  40029
  Copyright terms: Public domain W3C validator