| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 11371 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2753 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7389 ℂcc 11072 + caddc 11077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 |
| This theorem is referenced by: mvlladdi 11446 negsubdi2i 11514 1p2e3ALT 12331 4t4e16 12754 6t3e18 12760 6t5e30 12762 7t3e21 12765 7t4e28 12766 7t6e42 12768 7t7e49 12769 8t3e24 12771 8t4e32 12772 8t5e40 12773 8t8e64 12776 9t3e27 12778 9t4e36 12779 9t5e45 12780 9t6e54 12781 9t7e63 12782 9t8e72 12783 9t9e81 12784 n2dvdsm1 16345 bitsfzo 16411 gcdaddmlem 16500 6gcd4e2 16514 gcdi 17050 2exp8 17065 2exp16 17067 37prm 17097 43prm 17098 83prm 17099 139prm 17100 163prm 17101 317prm 17102 631prm 17103 1259lem1 17107 1259lem2 17108 1259lem3 17109 1259lem4 17110 1259lem5 17111 1259prm 17112 2503lem1 17113 2503lem2 17114 2503lem3 17115 2503prm 17116 4001lem1 17117 4001lem2 17118 4001lem4 17120 4001prm 17121 iaa 26239 dvradcnv 26336 eulerid 26389 binom4 26766 log2ublem3 26864 log2ub 26865 lgsdir2lem1 27242 m1lgs 27305 2lgsoddprmlem3d 27330 addsqnreup 27360 ex-exp 30385 ex-bc 30387 ex-gcd 30392 ex-ind-dvds 30396 9p10ne21 30405 vcm 30511 fib5 34402 fib6 34403 hgt750lem 34648 hgt750lem2 34649 60gcd7e1 41988 3exp7 42036 3lexlogpow5ineq1 42037 3lexlogpow5ineq5 42043 aks4d1p1p4 42054 aks4d1p1p5 42058 aks4d1p1 42059 decpmulnc 42270 sqdeccom12 42272 sq3deccom12 42273 235t711 42288 ex-decpmul 42289 sum9cubes 42653 resqrtvalex 43627 imsqrtvalex 43628 inductionexd 44137 lhe4.4ex1a 44311 dirkertrigeqlem1 46089 sqwvfoura 46219 sqwvfourb 46220 fourierswlem 46221 fouriersw 46222 fmtno5lem4 47547 257prm 47552 fmtno4nprmfac193 47565 fmtno5faclem3 47572 fmtno5fac 47573 139prmALT 47587 127prm 47590 11t31e341 47723 gbpart8 47759 ackval3 48662 ackval2012 48670 ackval3012 48671 |
| Copyright terms: Public domain | W3C validator |