![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 11481 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2768 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: mvlladdi 11554 negsubdi2i 11622 1p2e3ALT 12437 4t4e16 12857 6t3e18 12863 6t5e30 12865 7t3e21 12868 7t4e28 12869 7t6e42 12871 7t7e49 12872 8t3e24 12874 8t4e32 12875 8t5e40 12876 8t8e64 12879 9t3e27 12881 9t4e36 12882 9t5e45 12883 9t6e54 12884 9t7e63 12885 9t8e72 12886 9t9e81 12887 n2dvdsm1 16417 bitsfzo 16481 gcdaddmlem 16570 6gcd4e2 16585 gcdi 17120 2exp8 17136 2exp16 17138 37prm 17168 43prm 17169 83prm 17170 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 1259prm 17183 2503lem1 17184 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem2 17189 4001lem4 17191 4001prm 17192 iaa 26385 dvradcnv 26482 eulerid 26534 binom4 26911 log2ublem3 27009 log2ub 27010 lgsdir2lem1 27387 m1lgs 27450 2lgsoddprmlem3d 27475 addsqnreup 27505 ex-exp 30482 ex-bc 30484 ex-gcd 30489 ex-ind-dvds 30493 9p10ne21 30502 vcm 30608 fib5 34370 fib6 34371 hgt750lem 34628 hgt750lem2 34629 60gcd7e1 41962 3exp7 42010 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1p4 42028 aks4d1p1p5 42032 aks4d1p1 42033 decpmulnc 42276 sqdeccom12 42278 sq3deccom12 42279 235t711 42293 ex-decpmul 42294 sum9cubes 42627 resqrtvalex 43607 imsqrtvalex 43608 inductionexd 44117 lhe4.4ex1a 44298 dirkertrigeqlem1 46019 sqwvfoura 46149 sqwvfourb 46150 fourierswlem 46151 fouriersw 46152 fmtno5lem4 47430 257prm 47435 fmtno4nprmfac193 47448 fmtno5faclem3 47455 fmtno5fac 47456 139prmALT 47470 127prm 47473 11t31e341 47606 gbpart8 47642 ackval3 48417 ackval2012 48425 ackval3012 48426 |
Copyright terms: Public domain | W3C validator |