![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 11403 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2752 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7402 ℂcc 11105 + caddc 11110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-ltxr 11251 |
This theorem is referenced by: mvlladdi 11476 negsubdi2i 11544 1p2e3ALT 12354 4t4e16 12774 6t3e18 12780 6t5e30 12782 7t3e21 12785 7t4e28 12786 7t6e42 12788 7t7e49 12789 8t3e24 12791 8t4e32 12792 8t5e40 12793 8t8e64 12796 9t3e27 12798 9t4e36 12799 9t5e45 12800 9t6e54 12801 9t7e63 12802 9t8e72 12803 9t9e81 12804 n2dvdsm1 16311 bitsfzo 16375 gcdaddmlem 16464 6gcd4e2 16479 gcdi 17007 2exp8 17023 2exp16 17025 37prm 17055 43prm 17056 83prm 17057 139prm 17058 163prm 17059 317prm 17060 631prm 17061 1259lem1 17065 1259lem2 17066 1259lem3 17067 1259lem4 17068 1259lem5 17069 1259prm 17070 2503lem1 17071 2503lem2 17072 2503lem3 17073 2503prm 17074 4001lem1 17075 4001lem2 17076 4001lem4 17078 4001prm 17079 iaa 26181 dvradcnv 26276 eulerid 26328 binom4 26701 log2ublem3 26799 log2ub 26800 lgsdir2lem1 27177 m1lgs 27240 2lgsoddprmlem3d 27265 addsqnreup 27295 ex-exp 30175 ex-bc 30177 ex-gcd 30182 ex-ind-dvds 30186 9p10ne21 30195 vcm 30301 fib5 33896 fib6 33897 hgt750lem 34154 hgt750lem2 34155 60gcd7e1 41367 3exp7 41415 3lexlogpow5ineq1 41416 3lexlogpow5ineq5 41422 aks4d1p1p4 41433 aks4d1p1p5 41437 aks4d1p1 41438 decpmulnc 41693 sqdeccom12 41695 sq3deccom12 41696 235t711 41699 ex-decpmul 41700 sum9cubes 41928 resqrtvalex 42910 imsqrtvalex 42911 inductionexd 43420 lhe4.4ex1a 43602 dirkertrigeqlem1 45324 sqwvfoura 45454 sqwvfourb 45455 fourierswlem 45456 fouriersw 45457 fmtno5lem4 46734 257prm 46739 fmtno4nprmfac193 46752 fmtno5faclem3 46759 fmtno5fac 46760 139prmALT 46774 127prm 46777 11t31e341 46910 gbpart8 46946 ackval3 47582 ackval2012 47590 ackval3012 47591 |
Copyright terms: Public domain | W3C validator |