| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 11424 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2758 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 + caddc 11130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 |
| This theorem is referenced by: mvlladdi 11499 negsubdi2i 11567 1p2e3ALT 12382 4t4e16 12805 6t3e18 12811 6t5e30 12813 7t3e21 12816 7t4e28 12817 7t6e42 12819 7t7e49 12820 8t3e24 12822 8t4e32 12823 8t5e40 12824 8t8e64 12827 9t3e27 12829 9t4e36 12830 9t5e45 12831 9t6e54 12832 9t7e63 12833 9t8e72 12834 9t9e81 12835 n2dvdsm1 16386 bitsfzo 16452 gcdaddmlem 16541 6gcd4e2 16555 gcdi 17091 2exp8 17106 2exp16 17108 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 1259prm 17153 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem4 17161 4001prm 17162 iaa 26283 dvradcnv 26380 eulerid 26433 binom4 26810 log2ublem3 26908 log2ub 26909 lgsdir2lem1 27286 m1lgs 27349 2lgsoddprmlem3d 27374 addsqnreup 27404 ex-exp 30377 ex-bc 30379 ex-gcd 30384 ex-ind-dvds 30388 9p10ne21 30397 vcm 30503 fib5 34383 fib6 34384 hgt750lem 34629 hgt750lem2 34630 60gcd7e1 41964 3exp7 42012 3lexlogpow5ineq1 42013 3lexlogpow5ineq5 42019 aks4d1p1p4 42030 aks4d1p1p5 42034 aks4d1p1 42035 decpmulnc 42284 sqdeccom12 42286 sq3deccom12 42287 235t711 42301 ex-decpmul 42302 sum9cubes 42642 resqrtvalex 43616 imsqrtvalex 43617 inductionexd 44126 lhe4.4ex1a 44301 dirkertrigeqlem1 46075 sqwvfoura 46205 sqwvfourb 46206 fourierswlem 46207 fouriersw 46208 fmtno5lem4 47518 257prm 47523 fmtno4nprmfac193 47536 fmtno5faclem3 47543 fmtno5fac 47544 139prmALT 47558 127prm 47561 11t31e341 47694 gbpart8 47730 ackval3 48611 ackval2012 48619 ackval3012 48620 |
| Copyright terms: Public domain | W3C validator |