| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 11325 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2752 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: mvlladdi 11400 negsubdi2i 11468 1p2e3ALT 12285 4t4e16 12708 6t3e18 12714 6t5e30 12716 7t3e21 12719 7t4e28 12720 7t6e42 12722 7t7e49 12723 8t3e24 12725 8t4e32 12726 8t5e40 12727 8t8e64 12730 9t3e27 12732 9t4e36 12733 9t5e45 12734 9t6e54 12735 9t7e63 12736 9t8e72 12737 9t9e81 12738 n2dvdsm1 16298 bitsfzo 16364 gcdaddmlem 16453 6gcd4e2 16467 gcdi 17003 2exp8 17018 2exp16 17020 37prm 17050 43prm 17051 83prm 17052 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 1259prm 17065 2503lem1 17066 2503lem2 17067 2503lem3 17068 2503prm 17069 4001lem1 17070 4001lem2 17071 4001lem4 17073 4001prm 17074 iaa 26249 dvradcnv 26346 eulerid 26399 binom4 26776 log2ublem3 26874 log2ub 26875 lgsdir2lem1 27252 m1lgs 27315 2lgsoddprmlem3d 27340 addsqnreup 27370 ex-exp 30412 ex-bc 30414 ex-gcd 30419 ex-ind-dvds 30423 9p10ne21 30432 vcm 30538 fib5 34372 fib6 34373 hgt750lem 34618 hgt750lem2 34619 60gcd7e1 41978 3exp7 42026 3lexlogpow5ineq1 42027 3lexlogpow5ineq5 42033 aks4d1p1p4 42044 aks4d1p1p5 42048 aks4d1p1 42049 decpmulnc 42260 sqdeccom12 42262 sq3deccom12 42263 235t711 42278 ex-decpmul 42279 sum9cubes 42645 resqrtvalex 43618 imsqrtvalex 43619 inductionexd 44128 lhe4.4ex1a 44302 dirkertrigeqlem1 46080 sqwvfoura 46210 sqwvfourb 46211 fourierswlem 46212 fouriersw 46213 fmtno5lem4 47541 257prm 47546 fmtno4nprmfac193 47559 fmtno5faclem3 47566 fmtno5fac 47567 139prmALT 47581 127prm 47584 11t31e341 47717 gbpart8 47753 ackval3 48656 ackval2012 48664 ackval3012 48665 |
| Copyright terms: Public domain | W3C validator |