Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 11166 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2766 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: mvlladdi 11239 negsubdi2i 11307 1p2e3ALT 12117 4t4e16 12536 6t3e18 12542 6t5e30 12544 7t3e21 12547 7t4e28 12548 7t6e42 12550 7t7e49 12551 8t3e24 12553 8t4e32 12554 8t5e40 12555 8t8e64 12558 9t3e27 12560 9t4e36 12561 9t5e45 12562 9t6e54 12563 9t7e63 12564 9t8e72 12565 9t9e81 12566 n2dvdsm1 16078 bitsfzo 16142 gcdaddmlem 16231 6gcd4e2 16246 gcdi 16774 2exp8 16790 2exp16 16792 37prm 16822 43prm 16823 83prm 16824 139prm 16825 163prm 16826 317prm 16827 631prm 16828 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 1259prm 16837 2503lem1 16838 2503lem2 16839 2503lem3 16840 2503prm 16841 4001lem1 16842 4001lem2 16843 4001lem4 16845 4001prm 16846 iaa 25485 dvradcnv 25580 eulerid 25631 binom4 26000 log2ublem3 26098 log2ub 26099 lgsdir2lem1 26473 m1lgs 26536 2lgsoddprmlem3d 26561 addsqnreup 26591 ex-exp 28814 ex-bc 28816 ex-gcd 28821 ex-ind-dvds 28825 9p10ne21 28834 vcm 28938 fib5 32372 fib6 32373 hgt750lem 32631 hgt750lem2 32632 60gcd7e1 40013 3exp7 40061 3lexlogpow5ineq1 40062 3lexlogpow5ineq5 40068 aks4d1p1p4 40079 aks4d1p1p5 40083 aks4d1p1 40084 decpmulnc 40315 sqdeccom12 40317 sq3deccom12 40318 235t711 40319 ex-decpmul 40320 resqrtvalex 41253 imsqrtvalex 41254 inductionexd 41765 lhe4.4ex1a 41947 dirkertrigeqlem1 43639 sqwvfoura 43769 sqwvfourb 43770 fourierswlem 43771 fouriersw 43772 fmtno5lem4 45008 257prm 45013 fmtno4nprmfac193 45026 fmtno5faclem3 45033 fmtno5fac 45034 139prmALT 45048 127prm 45051 11t31e341 45184 gbpart8 45220 ackval3 46029 ackval2012 46037 ackval3012 46038 |
Copyright terms: Public domain | W3C validator |