Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 11096 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2766 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: mvlladdi 11169 negsubdi2i 11237 1p2e3ALT 12047 4t4e16 12465 6t3e18 12471 6t5e30 12473 7t3e21 12476 7t4e28 12477 7t6e42 12479 7t7e49 12480 8t3e24 12482 8t4e32 12483 8t5e40 12484 8t8e64 12487 9t3e27 12489 9t4e36 12490 9t5e45 12491 9t6e54 12492 9t7e63 12493 9t8e72 12494 9t9e81 12495 n2dvdsm1 16006 bitsfzo 16070 gcdaddmlem 16159 6gcd4e2 16174 gcdi 16702 2exp8 16718 2exp16 16720 37prm 16750 43prm 16751 83prm 16752 139prm 16753 163prm 16754 317prm 16755 631prm 16756 1259lem1 16760 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 1259prm 16765 2503lem1 16766 2503lem2 16767 2503lem3 16768 2503prm 16769 4001lem1 16770 4001lem2 16771 4001lem4 16773 4001prm 16774 iaa 25390 dvradcnv 25485 eulerid 25536 binom4 25905 log2ublem3 26003 log2ub 26004 lgsdir2lem1 26378 m1lgs 26441 2lgsoddprmlem3d 26466 addsqnreup 26496 ex-exp 28715 ex-bc 28717 ex-gcd 28722 ex-ind-dvds 28726 9p10ne21 28735 vcm 28839 fib5 32272 fib6 32273 hgt750lem 32531 hgt750lem2 32532 60gcd7e1 39941 3exp7 39989 3lexlogpow5ineq1 39990 3lexlogpow5ineq5 39996 aks4d1p1p4 40007 aks4d1p1p5 40011 aks4d1p1 40012 decpmulnc 40236 sqdeccom12 40238 sq3deccom12 40239 235t711 40240 ex-decpmul 40241 resqrtvalex 41142 imsqrtvalex 41143 inductionexd 41654 lhe4.4ex1a 41836 dirkertrigeqlem1 43529 sqwvfoura 43659 sqwvfourb 43660 fourierswlem 43661 fouriersw 43662 fmtno5lem4 44896 257prm 44901 fmtno4nprmfac193 44914 fmtno5faclem3 44921 fmtno5fac 44922 139prmALT 44936 127prm 44939 11t31e341 45072 gbpart8 45108 ackval3 45917 ackval2012 45925 ackval3012 45926 |
Copyright terms: Public domain | W3C validator |