| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 11310 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2754 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7352 ℂcc 11010 + caddc 11015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-ltxr 11157 |
| This theorem is referenced by: mvlladdi 11385 negsubdi2i 11453 1p2e3ALT 12270 4t4e16 12693 6t3e18 12699 6t5e30 12701 7t3e21 12704 7t4e28 12705 7t6e42 12707 7t7e49 12708 8t3e24 12710 8t4e32 12711 8t5e40 12712 8t8e64 12715 9t3e27 12717 9t4e36 12718 9t5e45 12719 9t6e54 12720 9t7e63 12721 9t8e72 12722 9t9e81 12723 n2dvdsm1 16286 bitsfzo 16352 gcdaddmlem 16441 6gcd4e2 16455 gcdi 16991 2exp8 17006 2exp16 17008 37prm 17038 43prm 17039 83prm 17040 139prm 17041 163prm 17042 317prm 17043 631prm 17044 1259lem1 17048 1259lem2 17049 1259lem3 17050 1259lem4 17051 1259lem5 17052 1259prm 17053 2503lem1 17054 2503lem2 17055 2503lem3 17056 2503prm 17057 4001lem1 17058 4001lem2 17059 4001lem4 17061 4001prm 17062 iaa 26266 dvradcnv 26363 eulerid 26416 binom4 26793 log2ublem3 26891 log2ub 26892 lgsdir2lem1 27269 m1lgs 27332 2lgsoddprmlem3d 27357 addsqnreup 27387 ex-exp 30437 ex-bc 30439 ex-gcd 30444 ex-ind-dvds 30448 9p10ne21 30457 vcm 30563 fib5 34425 fib6 34426 hgt750lem 34671 hgt750lem2 34672 60gcd7e1 42104 3exp7 42152 3lexlogpow5ineq1 42153 3lexlogpow5ineq5 42159 aks4d1p1p4 42170 aks4d1p1p5 42174 aks4d1p1 42175 decpmulnc 42386 sqdeccom12 42388 sq3deccom12 42389 235t711 42404 ex-decpmul 42405 sum9cubes 42771 resqrtvalex 43743 imsqrtvalex 43744 inductionexd 44253 lhe4.4ex1a 44427 dirkertrigeqlem1 46201 sqwvfoura 46331 sqwvfourb 46332 fourierswlem 46333 fouriersw 46334 fmtno5lem4 47661 257prm 47666 fmtno4nprmfac193 47679 fmtno5faclem3 47686 fmtno5fac 47687 139prmALT 47701 127prm 47704 11t31e341 47837 gbpart8 47873 ackval3 48789 ackval2012 48797 ackval3012 48798 |
| Copyright terms: Public domain | W3C validator |