| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 11365 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2752 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: mvlladdi 11440 negsubdi2i 11508 1p2e3ALT 12325 4t4e16 12748 6t3e18 12754 6t5e30 12756 7t3e21 12759 7t4e28 12760 7t6e42 12762 7t7e49 12763 8t3e24 12765 8t4e32 12766 8t5e40 12767 8t8e64 12770 9t3e27 12772 9t4e36 12773 9t5e45 12774 9t6e54 12775 9t7e63 12776 9t8e72 12777 9t9e81 12778 n2dvdsm1 16339 bitsfzo 16405 gcdaddmlem 16494 6gcd4e2 16508 gcdi 17044 2exp8 17059 2exp16 17061 37prm 17091 43prm 17092 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 1259prm 17106 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem4 17114 4001prm 17115 iaa 26233 dvradcnv 26330 eulerid 26383 binom4 26760 log2ublem3 26858 log2ub 26859 lgsdir2lem1 27236 m1lgs 27299 2lgsoddprmlem3d 27324 addsqnreup 27354 ex-exp 30379 ex-bc 30381 ex-gcd 30386 ex-ind-dvds 30390 9p10ne21 30399 vcm 30505 fib5 34396 fib6 34397 hgt750lem 34642 hgt750lem2 34643 60gcd7e1 41993 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1p4 42059 aks4d1p1p5 42063 aks4d1p1 42064 decpmulnc 42275 sqdeccom12 42277 sq3deccom12 42278 235t711 42293 ex-decpmul 42294 sum9cubes 42660 resqrtvalex 43634 imsqrtvalex 43635 inductionexd 44144 lhe4.4ex1a 44318 dirkertrigeqlem1 46096 sqwvfoura 46226 sqwvfourb 46227 fourierswlem 46228 fouriersw 46229 fmtno5lem4 47557 257prm 47562 fmtno4nprmfac193 47575 fmtno5faclem3 47582 fmtno5fac 47583 139prmALT 47597 127prm 47600 11t31e341 47733 gbpart8 47769 ackval3 48672 ackval2012 48680 ackval3012 48681 |
| Copyright terms: Public domain | W3C validator |