| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 11296 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2753 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 (class class class)co 7341 ℂcc 10996 + caddc 11001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-ltxr 11143 |
| This theorem is referenced by: mvlladdi 11371 negsubdi2i 11439 1p2e3ALT 12256 4t4e16 12679 6t3e18 12685 6t5e30 12687 7t3e21 12690 7t4e28 12691 7t6e42 12693 7t7e49 12694 8t3e24 12696 8t4e32 12697 8t5e40 12698 8t8e64 12701 9t3e27 12703 9t4e36 12704 9t5e45 12705 9t6e54 12706 9t7e63 12707 9t8e72 12708 9t9e81 12709 n2dvdsm1 16272 bitsfzo 16338 gcdaddmlem 16427 6gcd4e2 16441 gcdi 16977 2exp8 16992 2exp16 16994 37prm 17024 43prm 17025 83prm 17026 139prm 17027 163prm 17028 317prm 17029 631prm 17030 1259lem1 17034 1259lem2 17035 1259lem3 17036 1259lem4 17037 1259lem5 17038 1259prm 17039 2503lem1 17040 2503lem2 17041 2503lem3 17042 2503prm 17043 4001lem1 17044 4001lem2 17045 4001lem4 17047 4001prm 17048 iaa 26253 dvradcnv 26350 eulerid 26403 binom4 26780 log2ublem3 26878 log2ub 26879 lgsdir2lem1 27256 m1lgs 27319 2lgsoddprmlem3d 27344 addsqnreup 27374 ex-exp 30420 ex-bc 30422 ex-gcd 30427 ex-ind-dvds 30431 9p10ne21 30440 vcm 30546 fib5 34408 fib6 34409 hgt750lem 34654 hgt750lem2 34655 60gcd7e1 42017 3exp7 42065 3lexlogpow5ineq1 42066 3lexlogpow5ineq5 42072 aks4d1p1p4 42083 aks4d1p1p5 42087 aks4d1p1 42088 decpmulnc 42299 sqdeccom12 42301 sq3deccom12 42302 235t711 42317 ex-decpmul 42318 sum9cubes 42684 resqrtvalex 43657 imsqrtvalex 43658 inductionexd 44167 lhe4.4ex1a 44341 dirkertrigeqlem1 46115 sqwvfoura 46245 sqwvfourb 46246 fourierswlem 46247 fouriersw 46248 fmtno5lem4 47566 257prm 47571 fmtno4nprmfac193 47584 fmtno5faclem3 47591 fmtno5fac 47592 139prmALT 47606 127prm 47609 11t31e341 47742 gbpart8 47778 ackval3 48694 ackval2012 48702 ackval3012 48703 |
| Copyright terms: Public domain | W3C validator |