![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcomli | Structured version Visualization version GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 11449 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2762 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 + caddc 11155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 |
This theorem is referenced by: mvlladdi 11524 negsubdi2i 11592 1p2e3ALT 12407 4t4e16 12829 6t3e18 12835 6t5e30 12837 7t3e21 12840 7t4e28 12841 7t6e42 12843 7t7e49 12844 8t3e24 12846 8t4e32 12847 8t5e40 12848 8t8e64 12851 9t3e27 12853 9t4e36 12854 9t5e45 12855 9t6e54 12856 9t7e63 12857 9t8e72 12858 9t9e81 12859 n2dvdsm1 16402 bitsfzo 16468 gcdaddmlem 16557 6gcd4e2 16571 gcdi 17106 2exp8 17122 2exp16 17124 37prm 17154 43prm 17155 83prm 17156 139prm 17157 163prm 17158 317prm 17159 631prm 17160 1259lem1 17164 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 1259prm 17169 2503lem1 17170 2503lem2 17171 2503lem3 17172 2503prm 17173 4001lem1 17174 4001lem2 17175 4001lem4 17177 4001prm 17178 iaa 26381 dvradcnv 26478 eulerid 26530 binom4 26907 log2ublem3 27005 log2ub 27006 lgsdir2lem1 27383 m1lgs 27446 2lgsoddprmlem3d 27471 addsqnreup 27501 ex-exp 30478 ex-bc 30480 ex-gcd 30485 ex-ind-dvds 30489 9p10ne21 30498 vcm 30604 fib5 34386 fib6 34387 hgt750lem 34644 hgt750lem2 34645 60gcd7e1 41986 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow5ineq5 42041 aks4d1p1p4 42052 aks4d1p1p5 42056 aks4d1p1 42057 decpmulnc 42300 sqdeccom12 42302 sq3deccom12 42303 235t711 42317 ex-decpmul 42318 sum9cubes 42658 resqrtvalex 43634 imsqrtvalex 43635 inductionexd 44144 lhe4.4ex1a 44324 dirkertrigeqlem1 46053 sqwvfoura 46183 sqwvfourb 46184 fourierswlem 46185 fouriersw 46186 fmtno5lem4 47480 257prm 47485 fmtno4nprmfac193 47498 fmtno5faclem3 47505 fmtno5fac 47506 139prmALT 47520 127prm 47523 11t31e341 47656 gbpart8 47692 ackval3 48532 ackval2012 48540 ackval3012 48541 |
Copyright terms: Public domain | W3C validator |