MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom3 Structured version   Visualization version   GIF version

Theorem binom3 13581
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
Assertion
Ref Expression
binom3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))

Proof of Theorem binom3
StepHypRef Expression
1 df-3 11689 . . . 4 3 = (2 + 1)
21oveq2i 7146 . . 3 ((𝐴 + 𝐵)↑3) = ((𝐴 + 𝐵)↑(2 + 1))
3 addcl 10608 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 2nn0 11902 . . . 4 2 ∈ ℕ0
5 expp1 13432 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
63, 4, 5sylancl 589 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
72, 6syl5eq 2845 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
8 sqcl 13480 . . . . 5 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵)↑2) ∈ ℂ)
93, 8syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) ∈ ℂ)
10 simpl 486 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 simpr 488 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
129, 10, 11adddid 10654 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)))
13 binom2 13575 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1413oveq1d 7150 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴))
15 sqcl 13480 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1610, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
17 2cn 11700 . . . . . . . 8 2 ∈ ℂ
18 mulcl 10610 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
19 mulcl 10610 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2017, 18, 19sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2116, 20addcld 10649 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
22 sqcl 13480 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
2311, 22syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2421, 23, 10adddird 10655 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)))
2516, 20, 10adddird 10655 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
261oveq2i 7146 . . . . . . . . 9 (𝐴↑3) = (𝐴↑(2 + 1))
27 expp1 13432 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2810, 4, 27sylancl 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2926, 28syl5eq 2845 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) = ((𝐴↑2) · 𝐴))
30 sqval 13477 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
3110, 30syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
3231oveq1d 7150 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐴) · 𝐵))
3310, 10, 11mul32d 10839 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3432, 33eqtrd 2833 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3534oveq2d 7151 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = (2 · ((𝐴 · 𝐵) · 𝐴)))
36 2cnd 11703 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
3736, 18, 10mulassd 10653 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐴) = (2 · ((𝐴 · 𝐵) · 𝐴)))
3835, 37eqtr4d 2836 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = ((2 · (𝐴 · 𝐵)) · 𝐴))
3929, 38oveq12d 7153 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
4025, 39eqtr4d 2836 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))))
4123, 10mulcomd 10651 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐴) = (𝐴 · (𝐵↑2)))
4240, 41oveq12d 7153 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4314, 24, 423eqtrd 2837 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4413oveq1d 7150 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵))
4521, 23, 11adddird 10655 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
46 sqval 13477 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
4711, 46syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
4847oveq2d 7151 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = (𝐴 · (𝐵 · 𝐵)))
4910, 11, 11mulassd 10653 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐵) = (𝐴 · (𝐵 · 𝐵)))
5048, 49eqtr4d 2836 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = ((𝐴 · 𝐵) · 𝐵))
5150oveq2d 7151 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5236, 18, 11mulassd 10653 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐵) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5351, 52eqtr4d 2836 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = ((2 · (𝐴 · 𝐵)) · 𝐵))
5453oveq2d 7151 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5516, 20, 11adddird 10655 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5654, 55eqtr4d 2836 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵))
571oveq2i 7146 . . . . . . . 8 (𝐵↑3) = (𝐵↑(2 + 1))
58 expp1 13432 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
5911, 4, 58sylancl 589 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
6057, 59syl5eq 2845 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) = ((𝐵↑2) · 𝐵))
6156, 60oveq12d 7153 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
6216, 11mulcld 10650 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
6310, 23mulcld 10650 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
64 mulcl 10610 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
6517, 63, 64sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
66 3nn0 11903 . . . . . . . 8 3 ∈ ℕ0
67 expcl 13443 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
6811, 66, 67sylancl 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
6962, 65, 68addassd 10652 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7061, 69eqtr3d 2835 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7144, 45, 703eqtrd 2837 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7243, 71oveq12d 7153 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
73 expcl 13443 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
7410, 66, 73sylancl 589 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
75 mulcl 10610 . . . . . 6 ((2 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7617, 62, 75sylancr 590 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7774, 76addcld 10649 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
7865, 68addcld 10649 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
7977, 63, 62, 78add4d 10857 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8012, 72, 793eqtrd 2837 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8174, 76, 62addassd 10652 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
821oveq1i 7145 . . . . . . 7 (3 · ((𝐴↑2) · 𝐵)) = ((2 + 1) · ((𝐴↑2) · 𝐵))
83 1cnd 10625 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
8436, 83, 62adddird 10655 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 + 1) · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8582, 84syl5eq 2845 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8662mulid2d 10648 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑2) · 𝐵)) = ((𝐴↑2) · 𝐵))
8786oveq2d 7151 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8885, 87eqtrd 2833 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8988oveq2d 7151 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
9081, 89eqtr4d 2836 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))))
91 1p2e3 11768 . . . . . . . 8 (1 + 2) = 3
9291oveq1i 7145 . . . . . . 7 ((1 + 2) · (𝐴 · (𝐵↑2))) = (3 · (𝐴 · (𝐵↑2)))
9383, 36, 63adddird 10655 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 2) · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9492, 93syl5eqr 2847 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9563mulid2d 10648 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑2))) = (𝐴 · (𝐵↑2)))
9695oveq1d 7150 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9794, 96eqtrd 2833 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9897oveq1d 7150 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) = (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)))
9963, 65, 68addassd 10652 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
10098, 99eqtr2d 2834 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) = ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))
10190, 100oveq12d 7153 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
1027, 80, 1013eqtrd 2837 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  2c2 11680  3c3 11681  0cn0 11885  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  dcubic1lem  25429  mcubic  25433  binom4  25436  cu3addd  39621  3cubeslem3r  39628
  Copyright terms: Public domain W3C validator