MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom3 Structured version   Visualization version   GIF version

Theorem binom3 14189
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
Assertion
Ref Expression
binom3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))

Proof of Theorem binom3
StepHypRef Expression
1 df-3 12250 . . . 4 3 = (2 + 1)
21oveq2i 7398 . . 3 ((𝐴 + 𝐵)↑3) = ((𝐴 + 𝐵)↑(2 + 1))
3 addcl 11150 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 2nn0 12459 . . . 4 2 ∈ ℕ0
5 expp1 14033 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
63, 4, 5sylancl 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
72, 6eqtrid 2776 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
8 sqcl 14083 . . . . 5 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵)↑2) ∈ ℂ)
93, 8syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) ∈ ℂ)
10 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 simpr 484 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
129, 10, 11adddid 11198 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)))
13 binom2 14182 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1413oveq1d 7402 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴))
15 sqcl 14083 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1610, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
17 2cn 12261 . . . . . . . 8 2 ∈ ℂ
18 mulcl 11152 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
19 mulcl 11152 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2017, 18, 19sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2116, 20addcld 11193 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
22 sqcl 14083 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
2311, 22syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2421, 23, 10adddird 11199 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)))
2516, 20, 10adddird 11199 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
261oveq2i 7398 . . . . . . . . 9 (𝐴↑3) = (𝐴↑(2 + 1))
27 expp1 14033 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2810, 4, 27sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2926, 28eqtrid 2776 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) = ((𝐴↑2) · 𝐴))
30 sqval 14079 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
3110, 30syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
3231oveq1d 7402 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐴) · 𝐵))
3310, 10, 11mul32d 11384 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3432, 33eqtrd 2764 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3534oveq2d 7403 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = (2 · ((𝐴 · 𝐵) · 𝐴)))
36 2cnd 12264 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
3736, 18, 10mulassd 11197 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐴) = (2 · ((𝐴 · 𝐵) · 𝐴)))
3835, 37eqtr4d 2767 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = ((2 · (𝐴 · 𝐵)) · 𝐴))
3929, 38oveq12d 7405 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
4025, 39eqtr4d 2767 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))))
4123, 10mulcomd 11195 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐴) = (𝐴 · (𝐵↑2)))
4240, 41oveq12d 7405 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4314, 24, 423eqtrd 2768 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4413oveq1d 7402 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵))
4521, 23, 11adddird 11199 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
46 sqval 14079 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
4711, 46syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
4847oveq2d 7403 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = (𝐴 · (𝐵 · 𝐵)))
4910, 11, 11mulassd 11197 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐵) = (𝐴 · (𝐵 · 𝐵)))
5048, 49eqtr4d 2767 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = ((𝐴 · 𝐵) · 𝐵))
5150oveq2d 7403 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5236, 18, 11mulassd 11197 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐵) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5351, 52eqtr4d 2767 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = ((2 · (𝐴 · 𝐵)) · 𝐵))
5453oveq2d 7403 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5516, 20, 11adddird 11199 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5654, 55eqtr4d 2767 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵))
571oveq2i 7398 . . . . . . . 8 (𝐵↑3) = (𝐵↑(2 + 1))
58 expp1 14033 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
5911, 4, 58sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
6057, 59eqtrid 2776 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) = ((𝐵↑2) · 𝐵))
6156, 60oveq12d 7405 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
6216, 11mulcld 11194 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
6310, 23mulcld 11194 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
64 mulcl 11152 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
6517, 63, 64sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
66 3nn0 12460 . . . . . . . 8 3 ∈ ℕ0
67 expcl 14044 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
6811, 66, 67sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
6962, 65, 68addassd 11196 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7061, 69eqtr3d 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7144, 45, 703eqtrd 2768 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7243, 71oveq12d 7405 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
73 expcl 14044 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
7410, 66, 73sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
75 mulcl 11152 . . . . . 6 ((2 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7617, 62, 75sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7774, 76addcld 11193 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
7865, 68addcld 11193 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
7977, 63, 62, 78add4d 11403 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8012, 72, 793eqtrd 2768 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8174, 76, 62addassd 11196 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
821oveq1i 7397 . . . . . . 7 (3 · ((𝐴↑2) · 𝐵)) = ((2 + 1) · ((𝐴↑2) · 𝐵))
83 1cnd 11169 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
8436, 83, 62adddird 11199 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 + 1) · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8582, 84eqtrid 2776 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8662mullidd 11192 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑2) · 𝐵)) = ((𝐴↑2) · 𝐵))
8786oveq2d 7403 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8885, 87eqtrd 2764 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8988oveq2d 7403 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
9081, 89eqtr4d 2767 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))))
91 1p2e3 12324 . . . . . . . 8 (1 + 2) = 3
9291oveq1i 7397 . . . . . . 7 ((1 + 2) · (𝐴 · (𝐵↑2))) = (3 · (𝐴 · (𝐵↑2)))
9383, 36, 63adddird 11199 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 2) · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9492, 93eqtr3id 2778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9563mullidd 11192 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑2))) = (𝐴 · (𝐵↑2)))
9695oveq1d 7402 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9794, 96eqtrd 2764 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9897oveq1d 7402 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) = (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)))
9963, 65, 68addassd 11196 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
10098, 99eqtr2d 2765 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) = ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))
10190, 100oveq12d 7405 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
1027, 80, 1013eqtrd 2768 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  2c2 12241  3c3 12242  0cn0 12442  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  dcubic1lem  26753  mcubic  26757  binom4  26760  cos9thpiminplylem5  33776  cu3addd  42669  3cubeslem3r  42675
  Copyright terms: Public domain W3C validator