![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 23prm | Structured version Visualization version GIF version |
Description: 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
23prm | ⊢ ;23 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12541 | . . 3 ⊢ 2 ∈ ℕ0 | |
2 | 3nn 12343 | . . 3 ⊢ 3 ∈ ℕ | |
3 | 1, 2 | decnncl 12751 | . 2 ⊢ ;23 ∈ ℕ |
4 | 2nn 12337 | . . 3 ⊢ 2 ∈ ℕ | |
5 | 3nn0 12542 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 1nn0 12540 | . . 3 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12870 | . . 3 ⊢ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12769 | . 2 ⊢ 1 < ;23 |
9 | 4 | nncni 12274 | . . . 4 ⊢ 2 ∈ ℂ |
10 | 9 | mullidi 11264 | . . 3 ⊢ (1 · 2) = 2 |
11 | df-3 12328 | . . 3 ⊢ 3 = (2 + 1) | |
12 | 1, 6, 10, 11 | dec2dvds 17097 | . 2 ⊢ ¬ 2 ∥ ;23 |
13 | 7nn0 12546 | . . 3 ⊢ 7 ∈ ℕ0 | |
14 | 7cn 12358 | . . . . 5 ⊢ 7 ∈ ℂ | |
15 | 2 | nncni 12274 | . . . . 5 ⊢ 3 ∈ ℂ |
16 | 7t3e21 12841 | . . . . 5 ⊢ (7 · 3) = ;21 | |
17 | 14, 15, 16 | mulcomli 11268 | . . . 4 ⊢ (3 · 7) = ;21 |
18 | 1p2e3 12407 | . . . 4 ⊢ (1 + 2) = 3 | |
19 | 1, 6, 1, 17, 18 | decaddi 12791 | . . 3 ⊢ ((3 · 7) + 2) = ;23 |
20 | 2lt3 12436 | . . 3 ⊢ 2 < 3 | |
21 | 2, 13, 4, 19, 20 | ndvdsi 16446 | . 2 ⊢ ¬ 3 ∥ ;23 |
22 | 5nn 12350 | . . 3 ⊢ 5 ∈ ℕ | |
23 | 3lt5 12442 | . . 3 ⊢ 3 < 5 | |
24 | 1, 5, 22, 23 | declt 12759 | . 2 ⊢ ;23 < ;25 |
25 | 3, 8, 12, 21, 24 | prmlem1 17142 | 1 ⊢ ;23 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 1c1 11154 · cmul 11158 2c2 12319 3c3 12320 5c5 12322 7c7 12324 ;cdc 12731 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-prm 16706 |
This theorem is referenced by: bpos1 27342 |
Copyright terms: Public domain | W3C validator |