| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 23prm | Structured version Visualization version GIF version | ||
| Description: 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 23prm | ⊢ ;23 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12393 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 2 | 3nn 12199 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | decnncl 12603 | . 2 ⊢ ;23 ∈ ℕ |
| 4 | 2nn 12193 | . . 3 ⊢ 2 ∈ ℕ | |
| 5 | 3nn0 12394 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 1nn0 12392 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 7 | 1lt10 12722 | . . 3 ⊢ 1 < ;10 | |
| 8 | 4, 5, 6, 7 | declti 12621 | . 2 ⊢ 1 < ;23 |
| 9 | 4 | nncni 12130 | . . . 4 ⊢ 2 ∈ ℂ |
| 10 | 9 | mullidi 11112 | . . 3 ⊢ (1 · 2) = 2 |
| 11 | df-3 12184 | . . 3 ⊢ 3 = (2 + 1) | |
| 12 | 1, 6, 10, 11 | dec2dvds 16970 | . 2 ⊢ ¬ 2 ∥ ;23 |
| 13 | 7nn0 12398 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 14 | 7cn 12214 | . . . . 5 ⊢ 7 ∈ ℂ | |
| 15 | 2 | nncni 12130 | . . . . 5 ⊢ 3 ∈ ℂ |
| 16 | 7t3e21 12693 | . . . . 5 ⊢ (7 · 3) = ;21 | |
| 17 | 14, 15, 16 | mulcomli 11116 | . . . 4 ⊢ (3 · 7) = ;21 |
| 18 | 1p2e3 12258 | . . . 4 ⊢ (1 + 2) = 3 | |
| 19 | 1, 6, 1, 17, 18 | decaddi 12643 | . . 3 ⊢ ((3 · 7) + 2) = ;23 |
| 20 | 2lt3 12287 | . . 3 ⊢ 2 < 3 | |
| 21 | 2, 13, 4, 19, 20 | ndvdsi 16318 | . 2 ⊢ ¬ 3 ∥ ;23 |
| 22 | 5nn 12206 | . . 3 ⊢ 5 ∈ ℕ | |
| 23 | 3lt5 12293 | . . 3 ⊢ 3 < 5 | |
| 24 | 1, 5, 22, 23 | declt 12611 | . 2 ⊢ ;23 < ;25 |
| 25 | 3, 8, 12, 21, 24 | prmlem1 17014 | 1 ⊢ ;23 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7341 1c1 11002 · cmul 11006 2c2 12175 3c3 12176 5c5 12178 7c7 12180 ;cdc 12583 ℙcprime 16577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-fz 13403 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-prm 16578 |
| This theorem is referenced by: bpos1 27216 |
| Copyright terms: Public domain | W3C validator |