MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  23prm Structured version   Visualization version   GIF version

Theorem 23prm 17025
Description: 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
23prm 23 ∈ ℙ

Proof of Theorem 23prm
StepHypRef Expression
1 2nn0 12393 . . 3 2 ∈ ℕ0
2 3nn 12199 . . 3 3 ∈ ℕ
31, 2decnncl 12603 . 2 23 ∈ ℕ
4 2nn 12193 . . 3 2 ∈ ℕ
5 3nn0 12394 . . 3 3 ∈ ℕ0
6 1nn0 12392 . . 3 1 ∈ ℕ0
7 1lt10 12722 . . 3 1 < 10
84, 5, 6, 7declti 12621 . 2 1 < 23
94nncni 12130 . . . 4 2 ∈ ℂ
109mullidi 11112 . . 3 (1 · 2) = 2
11 df-3 12184 . . 3 3 = (2 + 1)
121, 6, 10, 11dec2dvds 16970 . 2 ¬ 2 ∥ 23
13 7nn0 12398 . . 3 7 ∈ ℕ0
14 7cn 12214 . . . . 5 7 ∈ ℂ
152nncni 12130 . . . . 5 3 ∈ ℂ
16 7t3e21 12693 . . . . 5 (7 · 3) = 21
1714, 15, 16mulcomli 11116 . . . 4 (3 · 7) = 21
18 1p2e3 12258 . . . 4 (1 + 2) = 3
191, 6, 1, 17, 18decaddi 12643 . . 3 ((3 · 7) + 2) = 23
20 2lt3 12287 . . 3 2 < 3
212, 13, 4, 19, 20ndvdsi 16318 . 2 ¬ 3 ∥ 23
22 5nn 12206 . . 3 5 ∈ ℕ
23 3lt5 12293 . . 3 3 < 5
241, 5, 22, 23declt 12611 . 2 23 < 25
253, 8, 12, 21, 24prmlem1 17014 1 23 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  (class class class)co 7341  1c1 11002   · cmul 11006  2c2 12175  3c3 12176  5c5 12178  7c7 12180  cdc 12583  cprime 16577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-prm 16578
This theorem is referenced by:  bpos1  27216
  Copyright terms: Public domain W3C validator