![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sdom2ALT | Structured version Visualization version GIF version |
Description: Alternate proof of 1sdom2 9261, shorter but requiring ax-un 7736. (Contributed by NM, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1sdom2ALT | ⊢ 1o ≺ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8657 | . . 3 ⊢ 1o ∈ ω | |
2 | php4 9234 | . . 3 ⊢ (1o ∈ ω → 1o ≺ suc 1o) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 1o ≺ suc 1o |
4 | df-2o 8484 | . 2 ⊢ 2o = suc 1o | |
5 | 3, 4 | breqtrri 5168 | 1 ⊢ 1o ≺ 2o |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 class class class wbr 5141 suc csuc 6364 ωcom 7866 1oc1o 8476 2oc2o 8477 ≺ csdm 8959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7867 df-1o 8483 df-2o 8484 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |