MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom2ALT Structured version   Visualization version   GIF version

Theorem 1sdom2ALT 9254
Description: Alternate proof of 1sdom2 9253, shorter but requiring ax-un 7734. (Contributed by NM, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1sdom2ALT 1o ≺ 2o

Proof of Theorem 1sdom2ALT
StepHypRef Expression
1 1onn 8657 . . 3 1o ∈ ω
2 php4 9229 . . 3 (1o ∈ ω → 1o ≺ suc 1o)
31, 2ax-mp 5 . 2 1o ≺ suc 1o
4 df-2o 8486 . 2 2o = suc 1o
53, 4breqtrri 5151 1 1o ≺ 2o
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   class class class wbr 5124  suc csuc 6359  ωcom 7866  1oc1o 8478  2oc2o 8479  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-2o 8486  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator