![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subeq0 | Structured version Visualization version GIF version |
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
Ref | Expression |
---|---|
subeq0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid 11480 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 𝐵) = 0) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − 𝐵) = 0) |
3 | 2 | eqeq2d 2737 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ (𝐴 − 𝐵) = 0)) |
4 | subcan2 11486 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) | |
5 | 4 | 3anidm23 1418 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) |
6 | 3, 5 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 (class class class)co 7404 ℂcc 11107 0cc0 11109 − cmin 11445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-ltxr 11254 df-sub 11447 |
This theorem is referenced by: subeq0i 11541 subeq0d 11580 subne0d 11581 subeq0ad 11582 mulcan1g 11868 div2sub 12040 cju 12209 nn0sub 12523 addmodlteq 13914 geoserg 15816 geolim 15820 geolim2 15821 georeclim 15822 geoisum1c 15830 tanadd 16115 fzocongeq 16272 divalglem8 16348 mndodcongi 19461 odf1 19480 odf1o1 19490 cnmet 24639 iccpnfhmeo 24821 plyremlem 26190 geolim3 26225 abelthlem2 26320 abelthlem7 26326 efeq1 26413 tanregt0 26424 logtayl 26545 ang180lem1 26692 ang180lem2 26693 ang180lem3 26694 lawcos 26699 isosctrlem1 26701 isosctrlem2 26702 atandm2 26760 atandm4 26762 2efiatan 26801 tanatan 26802 dvatan 26818 mumullem2 27063 mersenne 27111 dchrsum2 27152 sumdchr2 27154 addsq2reu 27324 axcgrid 28678 axcontlem2 28727 hvmulcan2 30831 poimirlem13 37012 rencldnfilem 42117 qirropth 42205 dvconstbi 43650 isosctrlem1ALT 44252 rrx2pnedifcoorneor 47658 rrx2pnedifcoorneorr 47659 |
Copyright terms: Public domain | W3C validator |