| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subeq0 | Structured version Visualization version GIF version | ||
| Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
| Ref | Expression |
|---|---|
| subeq0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subid 11441 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 𝐵) = 0) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − 𝐵) = 0) |
| 3 | 2 | eqeq2d 2740 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ (𝐴 − 𝐵) = 0)) |
| 4 | subcan2 11447 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) | |
| 5 | 4 | 3anidm23 1423 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) |
| 6 | 3, 5 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 |
| This theorem is referenced by: subeq0i 11502 subeq0d 11541 subne0d 11542 subeq0ad 11543 mulcan1g 11831 div2sub 12007 cju 12182 nn0sub 12492 addmodlteq 13911 geoserg 15832 geolim 15836 geolim2 15837 georeclim 15838 geoisum1c 15846 tanadd 16135 fzocongeq 16294 divalglem8 16370 mndodcongi 19473 odf1 19492 odf1o1 19502 cnmet 24659 iccpnfhmeo 24843 plyremlem 26212 geolim3 26247 abelthlem2 26342 abelthlem7 26348 efeq1 26437 tanregt0 26448 logtayl 26569 ang180lem1 26719 ang180lem2 26720 ang180lem3 26721 lawcos 26726 isosctrlem1 26728 isosctrlem2 26729 atandm2 26787 atandm4 26789 2efiatan 26828 tanatan 26829 dvatan 26845 mumullem2 27090 mersenne 27138 dchrsum2 27179 sumdchr2 27181 addsq2reu 27351 axcgrid 28843 axcontlem2 28892 hvmulcan2 31002 poimirlem13 37627 rencldnfilem 42808 qirropth 42896 dvconstbi 44323 isosctrlem1ALT 44923 rrx2pnedifcoorneor 48702 rrx2pnedifcoorneorr 48703 |
| Copyright terms: Public domain | W3C validator |