MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0 Structured version   Visualization version   GIF version

Theorem subeq0 11424
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
Assertion
Ref Expression
subeq0 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem subeq0
StepHypRef Expression
1 subid 11417 . . . 4 (𝐵 ∈ ℂ → (𝐵𝐵) = 0)
21adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐵) = 0)
32eqeq2d 2740 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ (𝐴𝐵) = 0))
4 subcan2 11423 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ 𝐴 = 𝐵))
543anidm23 1423 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ 𝐴 = 𝐵))
63, 5bitr3d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369  cc 11042  0cc0 11044  cmin 11381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383
This theorem is referenced by:  subeq0i  11478  subeq0d  11517  subne0d  11518  subeq0ad  11519  mulcan1g  11807  div2sub  11983  cju  12158  nn0sub  12468  addmodlteq  13887  geoserg  15808  geolim  15812  geolim2  15813  georeclim  15814  geoisum1c  15822  tanadd  16111  fzocongeq  16270  divalglem8  16346  mndodcongi  19449  odf1  19468  odf1o1  19478  cnmet  24635  iccpnfhmeo  24819  plyremlem  26188  geolim3  26223  abelthlem2  26318  abelthlem7  26324  efeq1  26413  tanregt0  26424  logtayl  26545  ang180lem1  26695  ang180lem2  26696  ang180lem3  26697  lawcos  26702  isosctrlem1  26704  isosctrlem2  26705  atandm2  26763  atandm4  26765  2efiatan  26804  tanatan  26805  dvatan  26821  mumullem2  27066  mersenne  27114  dchrsum2  27155  sumdchr2  27157  addsq2reu  27327  axcgrid  28819  axcontlem2  28868  hvmulcan2  30975  poimirlem13  37600  rencldnfilem  42781  qirropth  42869  dvconstbi  44296  isosctrlem1ALT  44896  rrx2pnedifcoorneor  48678  rrx2pnedifcoorneorr  48679
  Copyright terms: Public domain W3C validator