MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0 Structured version   Visualization version   GIF version

Theorem subeq0 11382
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
Assertion
Ref Expression
subeq0 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem subeq0
StepHypRef Expression
1 subid 11375 . . . 4 (𝐵 ∈ ℂ → (𝐵𝐵) = 0)
21adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐵) = 0)
32eqeq2d 2742 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ (𝐴𝐵) = 0))
4 subcan2 11381 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ 𝐴 = 𝐵))
543anidm23 1423 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ 𝐴 = 𝐵))
63, 5bitr3d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  (class class class)co 7341  cc 10999  0cc0 11001  cmin 11339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-sub 11341
This theorem is referenced by:  subeq0i  11436  subeq0d  11475  subne0d  11476  subeq0ad  11477  mulcan1g  11765  div2sub  11941  cju  12116  nn0sub  12426  addmodlteq  13848  geoserg  15768  geolim  15772  geolim2  15773  georeclim  15774  geoisum1c  15782  tanadd  16071  fzocongeq  16230  divalglem8  16306  mndodcongi  19450  odf1  19469  odf1o1  19479  cnmet  24681  iccpnfhmeo  24865  plyremlem  26234  geolim3  26269  abelthlem2  26364  abelthlem7  26370  efeq1  26459  tanregt0  26470  logtayl  26591  ang180lem1  26741  ang180lem2  26742  ang180lem3  26743  lawcos  26748  isosctrlem1  26750  isosctrlem2  26751  atandm2  26809  atandm4  26811  2efiatan  26850  tanatan  26851  dvatan  26867  mumullem2  27112  mersenne  27160  dchrsum2  27201  sumdchr2  27203  addsq2reu  27373  axcgrid  28889  axcontlem2  28938  hvmulcan2  31045  poimirlem13  37673  rencldnfilem  42853  qirropth  42941  dvconstbi  44367  isosctrlem1ALT  44966  rrx2pnedifcoorneor  48748  rrx2pnedifcoorneorr  48749
  Copyright terms: Public domain W3C validator