MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0 Structured version   Visualization version   GIF version

Theorem subeq0 11448
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
Assertion
Ref Expression
subeq0 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem subeq0
StepHypRef Expression
1 subid 11441 . . . 4 (𝐵 ∈ ℂ → (𝐵𝐵) = 0)
21adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐵) = 0)
32eqeq2d 2740 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ (𝐴𝐵) = 0))
4 subcan2 11447 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ 𝐴 = 𝐵))
543anidm23 1423 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ 𝐴 = 𝐵))
63, 5bitr3d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  cmin 11405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407
This theorem is referenced by:  subeq0i  11502  subeq0d  11541  subne0d  11542  subeq0ad  11543  mulcan1g  11831  div2sub  12007  cju  12182  nn0sub  12492  addmodlteq  13911  geoserg  15832  geolim  15836  geolim2  15837  georeclim  15838  geoisum1c  15846  tanadd  16135  fzocongeq  16294  divalglem8  16370  mndodcongi  19473  odf1  19492  odf1o1  19502  cnmet  24659  iccpnfhmeo  24843  plyremlem  26212  geolim3  26247  abelthlem2  26342  abelthlem7  26348  efeq1  26437  tanregt0  26448  logtayl  26569  ang180lem1  26719  ang180lem2  26720  ang180lem3  26721  lawcos  26726  isosctrlem1  26728  isosctrlem2  26729  atandm2  26787  atandm4  26789  2efiatan  26828  tanatan  26829  dvatan  26845  mumullem2  27090  mersenne  27138  dchrsum2  27179  sumdchr2  27181  addsq2reu  27351  axcgrid  28843  axcontlem2  28892  hvmulcan2  31002  poimirlem13  37627  rencldnfilem  42808  qirropth  42896  dvconstbi  44323  isosctrlem1ALT  44923  rrx2pnedifcoorneor  48702  rrx2pnedifcoorneorr  48703
  Copyright terms: Public domain W3C validator