![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subeq0 | Structured version Visualization version GIF version |
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
Ref | Expression |
---|---|
subeq0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid 11555 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 𝐵) = 0) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − 𝐵) = 0) |
3 | 2 | eqeq2d 2751 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ (𝐴 − 𝐵) = 0)) |
4 | subcan2 11561 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) | |
5 | 4 | 3anidm23 1421 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) |
6 | 3, 5 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 − cmin 11520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 |
This theorem is referenced by: subeq0i 11616 subeq0d 11655 subne0d 11656 subeq0ad 11657 mulcan1g 11943 div2sub 12119 cju 12289 nn0sub 12603 addmodlteq 13997 geoserg 15914 geolim 15918 geolim2 15919 georeclim 15920 geoisum1c 15928 tanadd 16215 fzocongeq 16372 divalglem8 16448 mndodcongi 19585 odf1 19604 odf1o1 19614 cnmet 24813 iccpnfhmeo 24995 plyremlem 26364 geolim3 26399 abelthlem2 26494 abelthlem7 26500 efeq1 26588 tanregt0 26599 logtayl 26720 ang180lem1 26870 ang180lem2 26871 ang180lem3 26872 lawcos 26877 isosctrlem1 26879 isosctrlem2 26880 atandm2 26938 atandm4 26940 2efiatan 26979 tanatan 26980 dvatan 26996 mumullem2 27241 mersenne 27289 dchrsum2 27330 sumdchr2 27332 addsq2reu 27502 axcgrid 28949 axcontlem2 28998 hvmulcan2 31105 poimirlem13 37593 rencldnfilem 42776 qirropth 42864 dvconstbi 44303 isosctrlem1ALT 44905 rrx2pnedifcoorneor 48450 rrx2pnedifcoorneorr 48451 |
Copyright terms: Public domain | W3C validator |