| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subeq0 | Structured version Visualization version GIF version | ||
| Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
| Ref | Expression |
|---|---|
| subeq0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subid 11391 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 𝐵) = 0) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − 𝐵) = 0) |
| 3 | 2 | eqeq2d 2744 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ (𝐴 − 𝐵) = 0)) |
| 4 | subcan2 11397 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) | |
| 5 | 4 | 3anidm23 1423 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐵 − 𝐵) ↔ 𝐴 = 𝐵)) |
| 6 | 3, 5 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 0cc0 11017 − cmin 11355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 |
| This theorem is referenced by: subeq0i 11452 subeq0d 11491 subne0d 11492 subeq0ad 11493 mulcan1g 11781 div2sub 11957 cju 12132 nn0sub 12442 addmodlteq 13860 geoserg 15780 geolim 15784 geolim2 15785 georeclim 15786 geoisum1c 15794 tanadd 16083 fzocongeq 16242 divalglem8 16318 mndodcongi 19463 odf1 19482 odf1o1 19492 cnmet 24706 iccpnfhmeo 24890 plyremlem 26259 geolim3 26294 abelthlem2 26389 abelthlem7 26395 efeq1 26484 tanregt0 26495 logtayl 26616 ang180lem1 26766 ang180lem2 26767 ang180lem3 26768 lawcos 26773 isosctrlem1 26775 isosctrlem2 26776 atandm2 26834 atandm4 26836 2efiatan 26875 tanatan 26876 dvatan 26892 mumullem2 27137 mersenne 27185 dchrsum2 27226 sumdchr2 27228 addsq2reu 27398 axcgrid 28915 axcontlem2 28964 hvmulcan2 31074 esplyind 33659 poimirlem13 37746 rencldnfilem 42977 qirropth 43065 dvconstbi 44491 isosctrlem1ALT 45090 rrx2pnedifcoorneor 48878 rrx2pnedifcoorneorr 48879 |
| Copyright terms: Public domain | W3C validator |