MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0 Structured version   Visualization version   GIF version

Theorem subeq0 11398
Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
Assertion
Ref Expression
subeq0 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem subeq0
StepHypRef Expression
1 subid 11391 . . . 4 (𝐵 ∈ ℂ → (𝐵𝐵) = 0)
21adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐵) = 0)
32eqeq2d 2744 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ (𝐴𝐵) = 0))
4 subcan2 11397 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ 𝐴 = 𝐵))
543anidm23 1423 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = (𝐵𝐵) ↔ 𝐴 = 𝐵))
63, 5bitr3d 281 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  (class class class)co 7355  cc 11015  0cc0 11017  cmin 11355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-sub 11357
This theorem is referenced by:  subeq0i  11452  subeq0d  11491  subne0d  11492  subeq0ad  11493  mulcan1g  11781  div2sub  11957  cju  12132  nn0sub  12442  addmodlteq  13860  geoserg  15780  geolim  15784  geolim2  15785  georeclim  15786  geoisum1c  15794  tanadd  16083  fzocongeq  16242  divalglem8  16318  mndodcongi  19463  odf1  19482  odf1o1  19492  cnmet  24706  iccpnfhmeo  24890  plyremlem  26259  geolim3  26294  abelthlem2  26389  abelthlem7  26395  efeq1  26484  tanregt0  26495  logtayl  26616  ang180lem1  26766  ang180lem2  26767  ang180lem3  26768  lawcos  26773  isosctrlem1  26775  isosctrlem2  26776  atandm2  26834  atandm4  26836  2efiatan  26875  tanatan  26876  dvatan  26892  mumullem2  27137  mersenne  27185  dchrsum2  27226  sumdchr2  27228  addsq2reu  27398  axcgrid  28915  axcontlem2  28964  hvmulcan2  31074  esplyind  33659  poimirlem13  37746  rencldnfilem  42977  qirropth  43065  dvconstbi  44491  isosctrlem1ALT  45090  rrx2pnedifcoorneor  48878  rrx2pnedifcoorneorr  48879
  Copyright terms: Public domain W3C validator